贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔南长顺县2024届数学八年级第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是()A. B. C. D.2.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y23.下面四个式子中,分式为()A. B. C. D.4.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为(

)A.9环与8环 B.8环与9环 C.8环与8.5环 D.8.5环与9环5.顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形6.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100m C.160m D.200m7.如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2 B.3 C.4 D.58.在四边形中,对角线和交于点,下列条件能判定这个四边形是菱形的是()A., B.,,C.,, D.,,9.若分式的值为0,则x的值为A.3 B. C.3或 D.010.下列运算正确的是().A. B.C. D.二、填空题(每小题3分,共24分)11.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球__________个。12.若已知a,b为实数,且=b﹣1,则a+b=_____.13.若,则_______(填不等号).14.一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.15.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.16.如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________17.如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.18.工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.三、解答题(共66分)19.(10分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?20.(6分)如图,在▱ABCD中,E是BC延长线上的一点,且DE=AB,连接AE、BD,证明AE=BD.21.(6分)文具商店里的画夹每个定价为20元,水彩每盒5元,其制定两种优惠办法:①买一个面夹赠送一盒水彩;②按总价的92%付款.一美术教师欲购买画夹4个,水彩若干盒(不少于4盒),设购买水彩x盒,付款y元.(1)试分别建立两种优惠办法中y与x的函数关系式;(2)美术老师购买水彩30盒,通过计算说明那种方法更省钱.22.(8分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.23.(8分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.24.(8分)如图①,将直角梯形放在平面直角坐标系中,已知,点在上,且,连结.(1)求证:;(2)如图②,过点作轴于,点在直线上运动,连结和.①当的周长最短时,求点的坐标;②如果点在轴上方,且满足,求的长.25.(10分)如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.(1)连接,求证:是等边三角形;(2)求,的长;(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?26.(10分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【题目详解】取中点,连接、、,,.在中,利用勾股定理可得.在中,根据三角形三边关系可知,当、、三点共线时,最大为.故选:.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.2、B【解题分析】

先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【题目详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.3、B【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】A.的分母中不含有字母,因此它是整式,而不是分式,故本选项错误;B.分母中含有字母,因此它们是分式,故本选项正确;C.是整式,而不是分式,故本选项错误;D.的分母中不含有字母,因此它们是整式,而不是分式.故本选项错误.故选B.【题目点拨】本题考查了分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.4、C【解题分析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【题目详解】根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.故选C.【题目点拨】本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.5、D【解题分析】

根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【题目详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.【题目点拨】此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.6、C【解题分析】分析:根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值得解析式;再根据对称性求B3、B4的纵坐标后再求出总长度.解答:解:(1)由题意得B(0,0.5)、C(1,0)设抛物线的解析式为:y=ax2+c代入得a=-c=∴解析式为:y=-x2+(2)当x=0.2时y=0.48当x=0.6时y=0.32∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6米∴所需不锈钢管的总长度为:1.6×100=160米.故选C.7、B【解题分析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【题目详解】在中,∴,,,∴.∴为直角三角形,且.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时.∴是的中位线.∴.∴.故选B.【题目点拨】本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.8、D【解题分析】

根据菱形的判定方法逐一进行判断即可.【题目详解】A.由,只能判定四边形是平行四边形,不一定是菱形,故该选项错误;B.由,,只能判定四边形是矩形,不一定是菱形,故该选项错误;C.由,,可判断四边形可能是等腰梯形,不一定是菱形,故该选项错误;D.由,能判定四边形是菱形,故该选项正确;故选:D.【题目点拨】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.9、A【解题分析】

根据分式的值为零的条件可以求出x的值.【题目详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A.【题目点拨】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.10、C【解题分析】

根据二次根式的性质和法则逐一计算即可判断.【题目详解】A.是同类二次根式,不能合并,此选项错误;B.=18,此选项错误;C.,此选项正确;D.,此选项错误;故选:C【题目点拨】本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.二、填空题(每小题3分,共24分)11、10【解题分析】

分析:设有x个黄球,利用概率公式可得,解出x的值,可得黄球数量,再求总数即可.【题目详解】解:设黄色的乒乓球有x个,则:解得:x=7经检验,x=7是原分式方程的解∴袋子里共有乒乓球7+3=10个【题目点拨】:此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12、6【解题分析】

根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.【题目详解】由题意得:,解得:a=5,所以:b=1,所以a+b=6,故答案为:6.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.13、<【解题分析】试题分析:根据不等式的基本性质3,直接求解得a<b.故答案为<14、0.3.【解题分析】试题分析:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S3=[(3﹣4)3+(5﹣4)3+(5﹣4)3+(4﹣4)3+(3﹣4)3]=0.3,故答案为0.3.考点:3.方差;3.算术平均数.15、1【解题分析】先设最多降价x元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.解:设最多降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤1.

故该店最多降价1元出售该商品.“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.16、【解题分析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【题目详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.【题目点拨】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.17、1【解题分析】

先由矩形的性质求出CD=AB=3,再根据勾股定理可直接算出BD的长度.【题目详解】∵四边形ABCD是菱形,∴CD=AB=3,由勾股定理可知,BD=CD2故答案为1.【题目点拨】本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.18、对角线相等的平行四边形是矩形.【解题分析】

根据已知条件和矩形的判定定理(对角线相等的平行四边形为矩形)解答即可.【题目详解】解:∵门窗所构成的形状是矩形,

∴根据矩形的判定(对角线相等的平行四边形为矩形)可得出.

故答案为:对角线相等的平行四边形是矩形.【题目点拨】本题主要考查矩形的判定定理:对角线相等的平行四边形为矩形,熟练掌握矩形的判定定理是解题的关键.三、解答题(共66分)19、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.【解题分析】

(1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.【题目详解】(1)设当x≥200时,y与x之间的函数关系式为y=kx+b,∵图象经过(200,40)(220,70),∴,解得,∴此时函数表达式为y=x-260;(2)根据图象可得小刚家10月份上网180小时应交费40元;(3)把y=52代入y=x-260中得:x=208,答:他家该月的上网时间是208小时.【题目点拨】考核知识点:一次函数的应用.数形结合分析问题是关键.20、见解析【解题分析】

首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据等腰三角形的性质可得∠DCE=∠DEC,即可证明△ABE≌△DEB,再根据全等三角形性质可得到结论.【题目详解】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∵DE=AB,∴DE=DC.∴∠DCE=∠DEC,∵AB∥DC,∴∠ABC=∠DCE.∴∠ABC=∠DEC.在△ABE与△DEB中,∴△ABE≌△DEB(SAS).∴AE=BD.【题目点拨】本题考查了平行四边形的性质,全等三角形的判定和性质,以及等腰三角形的性质,解题的关键是根据图中角的关系,找出证明全等的条件.21、(1)见解析;(2)①更省钱.【解题分析】

(1)根据题意可以得到y甲、y乙与乒乓球盒数x之间的函数关系式;(2)将x=30分别代入(1)中的两个函数关系式,然后进行比较,即可解答本题.【题目详解】(1)两种优惠办法中y与x的函数关系式分别为:①y=20×4+(x-4)×5=5x+60,②y=(20×4+5x)×92%=4.6x+73.6;(2)当x=30时,y=20×4+(x-4)×5=20×4+(30-4)×5=210(元),y=(20×4+5x)×92%=(20×4+5×30)×92%=211.6元,∴办法①更省钱.【题目点拨】本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.22、1【解题分析】

根据题意甲看错了b,分解结果为(x+2)(x+4),可得a系数是正确的,乙看错了a,分解结果为(x+1)(x+9),b系数是正确的,在利用因式分解是等式变形,可计算的参数a、b的值.【题目详解】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=1.【题目点拨】本题主要考查因式分解的系数计算,关键在于弄清那个系数是正确的.23、(1)见解析;(2)2+【解题分析】

(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.【题目详解】(1)证明:∵△ABC是等腰直角三角形,∴AC=BC,∴∠FCB=∠ECA=90°,∵AC⊥BE,BD⊥AE,∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,∵∠CFB=∠AFD,∴∠CBF=∠CAE,在△BCF与△ACE中,,∴△BCF≌△ACE,∴AE=BF,∵BE=BA,BD⊥AE,∴AD=ED,即AE=2AD,∴BF=2AD;(2)由(1)知△BCF≌△ACE,∴CF=CE=,∴在Rt△CEF中,EF==2,∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.24、(1)见解析;(2)①;②或8【解题分析】

(1)先由已知条件及勾股定理求出AE=1,AB=,得到,又∠OAB=∠BAE,根据两边对应成比例且夹角相等的两三角形相似证明△OAB∽△BAE,得出∠AOB=∠ABE,再由两直线平行,内错角相等得出∠OBC=∠AOB,从而证明∠OBC=∠ABE;(2)①由于CE为定长,所以当PC+PE最短时,△PCE的周长最短,而E与A关于BD对称,故连接AC,交BD于P,即当点C、P、A三点共线时,△PCE的周长最短.由PD∥OC,得出,求出PD的值,从而得到点P的坐标;②由于点P在x轴上方,BD=1,所以分两种情况:0<PD≤1与PD>1.设PD=t,先用含t的代数式分别表示S△CEP与S△ABP,再根据S△CEP:S△ABP=2:1,即可求出DP的长.【题目详解】解:(1)由题意可得:∵OC=1,BC=3,∠OCB=90°,∴OB=2.∵OA=2,OE=1,∴AE=1,AB=,∵,∴.∵,∴,.∵,∴,∴.(2)①∵BD⊥x轴,ED=AD=2,∴E与A关于BD对称,当点共线时,的周长最短.∵,∴,即∴∴.②设,当时,如图:∵梯,;又∵.∴,∴;当时,如图:∵,,∴..∴所求DP的长为或8.【题目点拨】本题是相似形的综合题,涉及到勾股定理,平行线的性质,轴对称的性质,三角形的面积,相似三角形的判定与性质,有一定难度.(2)中第二小问进行分类讨论是解题的关键.25、(1)见解析;(2);(3).【解题分析】

(1)由折叠知,据此得∠ENB=30°,∠ABN=60°,结合AB=BN即可得证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论