吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题含解析_第1页
吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题含解析_第2页
吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题含解析_第3页
吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题含解析_第4页
吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省农安县三盛玉中学2024届数学八年级第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知,则的值为()A.2x5 B.—2 C.52x D.22.在函数中,自变量必须满足的条件是()A. B. C. D.3.如图,在中,,,,以点为圆心,长为半径画弧,交于点,则()A.2.5 B.3 C.2 D.3.54.一次函数y=kx+1,y随x的增大而减小,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣16.若二次根式有意义,则x的取值范围是()A. B. C. D.7.直线y=kx+k﹣2经过点(m,n+1)和(m+1,2n+3),且﹣2<k<0,则n的取值范围是()A.﹣2<n<0 B.﹣4<n<﹣2 C.﹣4<n<0 D.0<n<﹣28.将函数的图象向上平移5个单位长度,得到的函数解析式为()A. B.C. D.9.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A. B. C. D.10.如图,字母M所代表的正方形的面积是()A.4 B.5 C.16 D.34二、填空题(每小题3分,共24分)11.一组数据2,3,2,3,5的方差是__________.12.不等式2x+8≥3(x+2)的解集为_____.13.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为14.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____15.为了了解某校九年级学生的体能情况,随机抽查额其中名学生,测试分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的统计图(注:包括,不包括,其他同),根据统计图计算成绩在次的频率是__________.16.已知不等式的解集为﹣1<x<2,则(a+1)(b﹣1)的值为____.17.若最简二次根式和是同类二次根式,则______.18.已知关于x的方程2x+m=x﹣3的根是正数,则m的取值范围是_____.三、解答题(共66分)19.(10分)为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:甲:7,8,6,10,10,7乙:7,7,8,8,10,8,如果你是教练你会选拨谁参加比赛?为什么?20.(6分)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?21.(6分)(1)计算:()﹣()+2(2)已知:x=﹣1,求代数式x2+2x﹣2的值.22.(8分)解方程:x2-1=4x23.(8分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)求一班参赛选手的平均成绩;(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?(3)求二班参赛选手成绩的中位数.24.(8分)如图,在中,,点P从点A开始,沿AB向点B以的速度移动,点Q从B点开始沿BC

以的速度移动,如果P、Q分别从A、B同时出发:几秒后四边形APQC的面积是31平方厘米;若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.25.(10分)因式分解:(1)m2n﹣2mn+n;(2)x2+3x(x﹣3)﹣926.(10分)昆明市某校学生会干部对校学生会倡导的“牵手滇西”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:1.组别捐款额x/元人数A1≤x<10aB10≤x<20100C20≤x<30D30≤x<40E40≤x<10请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)根据统计情况,估计该校参加捐款的4100名学生有多少人捐款在20至40元之间.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【题目详解】因为1x2,所以==52x.故选择C.【题目点拨】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.2、B【解题分析】

由函数表达式是分式,考虑分式的分母不能为0,即可得到答案.【题目详解】解:∵函数,∴,∴;故选:B.【题目点拨】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为0.3、C【解题分析】

首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.【题目详解】∵AC=3,BC=4,

∴AB==5,

∵以点A为圆心,AC长为半径画弧,交AB于点D,

∴AD=AC,

∴AD=3,

∴BD=AB-AD=5-3=1.

故选:C.【题目点拨】此题考查勾股定理,解题关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4、C【解题分析】

根据函数的增减性及解析式判断函数图象所经过的象限即可.【题目详解】∵一次函数y=kx+1,y随x的增大而减小,∴k<0,∵1>0,∴函数图象经过一、二、四象限.故选C.【题目点拨】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0,b>0时,函数图象过一、二、三象限,y随x增大而增大;当k>0,b<0时,函数图象过一、三、四象限,y随x增大而增大;当k<0,b>0时,函数图象过一、二、四象限,y随x增大而减小;当k<0,b<0时,函数图象过二、三、四象限,y随x增大而减小.5、C【解题分析】

根据二次根式的性质和分式的意义,被开方数大于或等于1,可得答案.【题目详解】要使有意义,得x-1≥1.解得x≥1,故选C.考点:二次根式有意义的条件.6、D【解题分析】试题分析:根据二次根式的意义,可知其被开方数为非负数,因此可得x-2≥0,即x≥2.故选D7、B【解题分析】

(方法一)根据一次函数图象上点的坐标特征可求出n=k﹣1,再结合k的取值范围,即可求出n的取值范围;(方法二)利用一次函数k的几何意义,可得出k=n+1,再结合k的取值范围,即可求出n的取值范围.【题目详解】解:(方法一)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),∴,∴n=k﹣1.又∵﹣1<k<0,∴﹣4<n<﹣1.(方法二)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),∴.∵﹣1<k<0,即﹣1<n+1<0,∴﹣4<n<﹣1.故选B.【题目点拨】本题考查了一次函数图象上点的坐标特征,解题的关键是:(方法一)牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”;(方法二)根据一次函数k的几何意义找出关于n的一元一次不等式.8、A【解题分析】

根据函数图象上加下减,可得答案.【题目详解】由题意,得y=2x+5,即y=2x+5,故选:A.【题目点拨】此题考查一次函数图象与几何变换,解题关键在于掌握平移法则9、B【解题分析】

根据一次函数的增减性进行判断.【题目详解】解:对y=-3x+b,因为k=-3<0,所以y随x的增大而减小,因为―2<―1<1,所以,故选B.【题目点拨】本题考查了一次函数的增减性,熟练掌握一次函数的性质是解题的关键.10、C【解题分析】分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.详解:由勾股定理,得:M=25﹣9=1.故选C.点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.二、填空题(每小题3分,共24分)11、1.2【解题分析】

解:先求出平均数(2+3+2+3+5)5=3,再根据方差公式计算方差=即可12、x≤2【解题分析】

根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【题目详解】去括号,得:2x+8≥3x+6,移项,得:2x-3x≥6-8,合并同类项,得:-x≥-2,系数化为1,得:x≤2,故答案为x≤2【题目点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.13、1或32【解题分析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【题目详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC=42+32=5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得x=32,

∴BE=32;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为32或14、()1.【解题分析】

首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【题目详解】∵四边形ABCD为正方形,

∴AB=BC=1,∠B=90°,

∴AC2=12+12,AC=;

同理可求:AE=()2,HE=()3…,

∴第n个正方形的边长an=()n-1,

∴第2016个正方形的边长为()1,

故答案为()1.【题目点拨】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.15、【解题分析】

根据频率的求法,频率=,计算可得到答案.【题目详解】频率=.故答案为:0.7.【题目点拨】本题考查了随机抽样中的条形图的认识,掌握频率的求法是解题的关键.16、-12【解题分析】

先求出每个不等式的解集,求出不等式组的解集,根据已知不等式组的解集得出方程,求出a、b的值,代入即可求出答案.【题目详解】解:∵解不等式2x-a<1得:x<,解不等式x-2b>3得:x>2b+3,

∴不等式组的解集是2b+3<x<a,

∵不等式组的解集为-1<x<2,

∴2b+3=-1,,∴b=-2,a=3,

∴(a+1)(b-1)=(3+1)×(-2-1)=-12,

故答案为:-12.【题目点拨】本题考查了一元一次方程,一元一次不等式组的应用,解此题的关键事实能得出关于a、b的方程,题目比较好,难度适中.17、4【解题分析】

根据被开方数相同列式计算即可.【题目详解】∵最简二次根式和是同类二次根式,∴a-1=11-2a,∴a=4.故答案为:4.【题目点拨】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.18、m<﹣1【解题分析】

根据关于x的方程2x+m=x﹣1的根是正数,可以求得m的取值范围.【题目详解】解:由方程2x+m=x﹣1,得x=﹣m﹣1,∵关于x的方程2x+m=x﹣1的根是正数,∴﹣m﹣1>0,解得,m<﹣1,故答案为:m<﹣1.【题目点拨】本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m的取值范围.三、解答题(共66分)19、应选乙参加比赛.【解题分析】分析:分别求出甲、乙两名学生6次射靶环数的平均数和方差,然后进行比较即可求得结果.详解:(1)甲=(7+8+6+10+10+7)=8;S甲2=[(7-8)2+(8-8)2+(6-8)2+(10-8)2+(10-8)2+(7-8)2]=;乙=(7+7+8+8+10+8)=8;S乙2=[(7-8)2+(7-8)2+(8-8)2+(8-8)2+(10-8)2+(8-8)2]=1;∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,∴乙同学的成绩较稳定,应选乙参加比赛.点睛:本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.20、(1)由题意,y甲=1000+20x,y乙=25x;(2)选择甲施工队所需费用较少(3)见解析【解题分析】分析:(1)、根据题意总费用=每立方米费用乘以立方米数加上额外费用从而得出函数解析式;(2)、过A作AF⊥BC于F,根据直角三角形的面积计算法则得出土方的数量,然后分别求出两个施工队的费用,从而得出答案;(3)、根据不等式的性质求出答案.详解:(1)由题意,y甲=1000+20x,y乙=25x;(2)如图,过A作AF⊥BC于F,∵∠ABC=60°,AB=4,∴AF=6,∴S△ABE=BE•AF=6,∴100米长的护坡土坝的土方的总量为6×100=600,当x=600时,y甲=13000;y乙=15000,∴选择甲施工队所需费用较少;(3)①当y甲=y乙,则1000+20x=25x,∴x=200,②当x>200时,y甲<y乙;③当0<x<200时,y甲>y乙.∴当100<x<200时,选择乙工程队;当x>200时,选择甲工程队;当x=200时,甲乙一样.点睛:本题主要考查的是一次函数的实际应用以及不等式的应用,属于中等难度的题型.根据题意得出等量关系是解决这个问题的关键.21、(1);(2)0.【解题分析】

(1)先分别进行二次根式的化简,然后进行二次根式的乘除,最后再进行二次根式的加减即可得;(2)把x的值代入进行计算即可得.【题目详解】(1)()﹣()+2=;(2)把,代入,则原式.【题目点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的去处顺序以及运算法则是解题的关键.22、【解题分析】

解:,,方程有两个不相等的实数根【题目点拨】本题考查一元二次方程,本题难度较低,主要考查学生对一元二次方程知识点的掌握,运用求根公式即可.23、(1)分;(2)人;(3)80分【解题分析】

(1)根据算术平均数的定义列式计算可得;

(2)总人数乘以A、B、C等级所占百分比即可;

(3)根据中位数的定义求解即可.【题目详解】解:(1)一班参赛选手的(分)(2)二班成绩在级以上(含级)(人)(3)二班、人数占,参赛学生共有20人,因此中位数落在C级,二班参赛选手成绩的中位数为80分.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24、经过1或5秒钟,可使得四边形APQC的面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论