2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江绍兴市越城区数学八年级第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7C.n=8 D.n=92.在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为()A.

或 B. C.2 D.2或103.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24.某特快列车在最近一次的铁路大提速后,时速提高了30千米小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米小时,下列所列方程正确的是A. B.C. D.5.如图,在中,点是对角线,的交点,点是边的中点,且,则的长为()A. B. C. D.6.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③7.平行四边形的一个内角为50°,它的相邻的一个内角等于()A.40° B.50° C.130° D.150°8.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数 B.中位数 C.众数 D.方差9.已知四边形ABCD是任意四边形,若在下列条件中任取两个,使四边形ABCD是平行四边形,①AB∥CD;②BC∥AD,③AB=CD;④BC=AD,则符合条件的选择有()A.2组 B.3组 C.4组 D.6组10.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>211.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°B.40°C.80°D.120°12.如图,数轴上的点A所表示的数为x,则x2的值为()A.2 B.-−10 C. D.-2二、填空题(每题4分,共24分)13.如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)14.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.15.如图,四边形是矩形,是延长线上的一点,是上一点,;若,则=________.16.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.17.如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.18.如图,在菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=___.三、解答题(共78分)19.(8分)一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?20.(8分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.21.(8分)如图,直线与轴、轴分别交于,点的坐标为,是直线在第一象限内的一个动点(1)求⊿的面积与的函数解析式,并写出自变量的取值范围?(2)过点作轴于点,作轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由?22.(10分)2019年中国北京世界园艺博览会于4月28日晚在北京·延庆隆重开幕,本届世园会主题为“绿色生活、美丽家园”.自开园以来,世园会迎来了世界各国游客进园参观.据统计,仅五一小长假前来世园会打卡的游客就总计约32.7万人次.其中中国馆也是非常受欢迎的场馆.据调查,中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,求中国馆这两天游客人数的日平均增长率是多少?23.(10分)已知一次函数的图象如图所示,(1)求的值;(2)在同一坐标系内画出函数的图象;(3)利用(2)中你所面的图象,写出时,的取值范围.24.(10分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.25.(12分)如图是一块四边形的草坪ABCD,经测量得到以下数据:CD=AC=2BC=20m,AB=10m,∠ACD=90°.(1)求AD的长;(2)求∠ABC的度数;(3)求四边形ABCD的面积.26.如图,在中,点、分别在边、上,且AE=CF,连接,请只用无刻度的直尺画出线段的中点,并说明这样画的理由.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.【题目详解】解:由题意得:180(n-2)=360×3,

解得:n=8,

故选:C.【题目点拨】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.2、A【解题分析】

直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.【题目详解】解:如图:分两种情况:(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,∴AB=2AP1=4,∴OB=OA-AB=6-4=2,在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;(2)同理可求得AD=4,OD=OA+AD=10,在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;故选:A.【题目点拨】考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类.3、C【解题分析】试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.4、B【解题分析】

根据题意可得等量关系为原来走350千米所用的时间提速后走350千米所用的时间,根据等量关系列式即可判断.【题目详解】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:.故选:B.【题目点拨】本题考查分式方程的实际应用,根据题意找到提速前和提速后所用时间的等量关系是解决本题的关键.5、C【解题分析】

先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【题目详解】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=10,,故选:C.【题目点拨】本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.6、A【解题分析】

连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【题目详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,

∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.

∴∠ADE+∠EDC=90°,

∵∠EDC+∠FDC=∠GDH=90°,

∴∠ADE=∠CDF.

在△ADE和△CDF中,∴△ADE≌△CDF(ASA),

∴AE=CF,DE=DF,S△ADE=S△CDF.

∵AC=BC,

∴AC-AE=BC-CF,

∴CE=BF.

∵AC=AE+CE,

∴AC=AE+BF.

∵DE=DF,∠GDH=90°,

∴△DEF始终为等腰直角三角形.

∵CE1+CF1=EF1,

∴AE1+BF1=EF1.

∵S四边形CEDF=S△EDC+S△EDF,

∴S四边形CEDF=S△EDC+S△ADE=S△ABC.

∴正确的有①②③④.

故选A.【题目点拨】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.7、C【解题分析】

利用平行四边形的邻角互补进而得出答案.【题目详解】解:∵平行四边形的一个内角为50°,邻角互补,∴它的相邻的一个内角等于180°-50°=130°.故选:C.【题目点拨】此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.8、B【解题分析】

由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【题目详解】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9、C【解题分析】

由平行四边形的判定方法即可解决问题.【题目详解】∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形;∵BC∥AD,BC=AD,∴四边形ABCD是平行四边形;∵BC=AD,AB=CD,∴四边形ABCD是平行四边形;即使得ABCD是平行四边形,一共有4种不同的组合;故选:C.【题目点拨】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法是解决问题的关键.10、C【解题分析】

由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.故答案为x<1.11、C【解题分析】【分析】根据四边形的内角和为360度结合各角的比例即可求得答案.【题目详解】∵四边形内角和360°,∴设∠A=x°,则有x+2x+3x+3x=360,解得x=40,则∠B=80°,故选B.【题目点拨】本题考查了多边形的内角和,根据四边形内角和等于360°列出方程是解题关键.12、A【解题分析】

直接利用数轴结合勾股定理得出x的值,进而得出答案.【题目详解】解:由题意可得:点A所表示的数为x为:-,则x1的值为:1.故选:A.【题目点拨】此题主要考查了实数与数轴,正确得出x的值是解题关键.二、填空题(每题4分,共24分)13、①②③【解题分析】

根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.【题目详解】∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,∵∠OCF=∠DCF,∠BAE=∠OAE,∴∠OCF=∠DCF=∠BAE=∠OAE=30°,∴AE//CF,AE=CE,∴四边形AECF是平行四边形,∵AE=CE,∴四边形AECF是菱形,故①正确,∵∠BAE=30°,∠B=90°,∴∠AEB=60°,∴∠AEC=120°,故②正确,设BE=x,∵∠BAE=30°,∴AE=2x,∴x2+22=(2x)2,解得:x=,∴OE=BE=,∴S菱形AECF=EFAC=××4=,故③正确,∵∠ACB=30°,∴AC=2AB,∴BC==AB,∴AB:BC=1:,故④错误,综上所述:正确的结论有①②③,故答案为:①②③【题目点拨】本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.14、1【解题分析】先设最多降价x元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.解:设最多降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤1.

故该店最多降价1元出售该商品.“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15、【解题分析】分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.详解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°.故答案为:23°.点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.16、1【解题分析】

先用平均数是3可得x的值,再结合方差公式计算即可.【题目详解】平均数是3(1+1+3+x+5),解得:x=4,∴方差是S1[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]10=1.故答案为1.【题目点拨】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.17、6【解题分析】

作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy.【题目详解】作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy=6.故答案为:6【题目点拨】本题考核知识点:反比例函数意义.解题关键点:熟记反比例函数的意义.18、1°【解题分析】

利用菱形的性质得出∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,再利用等腰三角形的性质以及三角形外角的性质得出答案.【题目详解】∵菱形ABCD中,∠BAD=120°,CF⊥AD于点E,

∴∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC⊥BD,

∴∠BCF=90°,

∵BC=CF,

∴∠CBF=∠BFC=45°,

∴∠FBD=45°-30°=15°,

∴∠FMC=90°+15°=1°.

故答案为:1.【题目点拨】此题考查菱形的性质,等腰三角形的性质,得出∠CBF=∠BFC=45°是解题关键.三、解答题(共78分)19、(1);(2)每分钟进水5升,出水升.【解题分析】

(1)根据题意和函数图象可以求得y与x的函数关系式;

(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.【题目详解】解:(1)当0≤x≤8时,设y关于x的函数解析式是y=kx,

8k=10,得k=,

即当0≤x≤8时,y与x的函数关系式为y=,

当8≤x≤12时,设y与x的函数关系式为y=ax+b,,得,

即当8≤x≤12时,y与x的函数关系式为y=5x-30,

由上可得,y=;

(2)进水管的速度为:20÷4=5L/min,

出水管的速度为:=L/min

答:每分钟进水、出水各5L,L.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)证明见解析;(2)成立,证明见解析.【解题分析】

解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF∴OE=OF(2)OE=OF成立∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA又∵AM⊥BE,∴∠F+∠MBF=90°=∠E+∠OBE又∵∠MBF=∠OBE∴∠F=∠E∴Rt△BOE≌Rt△AOF∴OE=OF21、(1),;(2)的最小值为【解题分析】分析:本题的⑴问直接根据坐标来表示⊿的底边和底边上的高,利用三角形的面积公式得出函数解析式;本题的⑵抓住四边形是矩形,矩形的对角线相等即,从而把转化到上来解决,当的端点运动到时最短,以此为切入点,问题可获得解决.详解:⑴.∵的坐标为,是直线在第一象限的一个动点,且轴.∴,∴整理得:自变量的取值范围是:⑵.存在一点使得的长最小.求出直线与轴交点的坐标为,与轴交点的坐标为∴∴根据勾股定理计算:.∵轴,轴,轴轴∴∴四边形是矩形∴当的端点运动到(实际上点恰好是的中点)时的最短(垂线段最短)(见示意图)又∵∴点为线段中点(三线合一)∴(注:也可以用面积方法求解)∴即的最小值为点睛:本题的⑴问直接利用三角形的面积公式并结合点的坐标可以求解析式;本题的⑵问要打破平时求最小值的思路,把问题进行转化,通过求的最小值来得到的最小值,构思巧妙!22、50%.【解题分析】

设中国馆这两天游客人数的日平均增长率为x,根据中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,列出方程即可.【题目详解】解:设中国馆这两天游客人数的日平均增长率为x,由题意得:解得,(舍去)答:中国馆这两天游客人数的日平均增长率为50%.【题目点拨】此题考查一元二次方程的应用,解题关键在于列出方程.23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论