版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉安市朝宗实验学校2024届八年级数学第二学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图所示,函数y=k(x+1)与y=kxk<0A. B. C. D.2.若b>0,则一次函数y=﹣x+b的图象大致是()A. B. C. D.3.要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为()A.中位数B.方差C.平均数D.众数4.如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是()A.1cm2 B.2cm2 C.3cm2 D.4cm25.点P的坐标为(﹣3,2),把点P向右平移2个单位后再向下平移5个单位得到点P1,则点P1的坐标为()A.(﹣1,2) B.(﹣5,﹣3) C.(﹣1,﹣3) D.(﹣1,7)6.矩形具有而菱形不一定具有的性质是()A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直7.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是()A.32° B.35° C.36° D.40°9.在平面直角坐标系中,点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限10.关于函数y=,下列结论正确的是()A.函数图象必经过点(1,4)B.函数图象经过二三四象限C.y随x的增大而增大D.y随x的增大而减小二、填空题(每小题3分,共24分)11.已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为__________.12.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+ B.4+ C.4 D.-1+13.如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.14.已知,正比例函数经过点(-1,2),该函数解析式为________________.15.如图1,平行四边形纸片的面积为120,,.沿两对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是.16.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.17.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.18.因式分解:______.三、解答题(共66分)19.(10分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。20.(6分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(l)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?21.(6分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;(2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;(3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.22.(8分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.23.(8分)先化简,再求值,其中a=-224.(8分)先化简,再求值:其中,25.(10分)计算:(212-13)×26.(10分)分别按下列要求解答:(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.(2)将绕顺时针旋转度得到,画出,则点坐标为__________.(3)在(2)的条件下,求移动的路径长.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据反比例函数和一次函数的图像特点解答即可.【题目详解】∵k<0∴反比例函数的图像只能在二、四象限,故排除答案A,D又一次函数的解析式为:y=k(x+1)(k<0)∴一次函数的图像过二、三、四象限故答案选择B.【题目点拨】本题考查的是反比例函数和一次函数的图像特征,反比例函数y=kx,当k>0时,函数图像过一、三象限,当k<0时,函数图像过二、四象限;一次函数y=kx+b,当k>0,b>0时,函数图像过一、二、三象限,当k>0,b<0时,函数图像过一、三、四象限,当k<0,b>0时,函数图像过一、二、四象限,当k<0,b<02、C【解题分析】分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数中∴一次函数的图象经过一、二、四象限,故选C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3、B【解题分析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.故选B.点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.4、A【解题分析】
根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.【题目详解】由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.,即图中阴影部分的面积为1cm1.故选A.【题目点拨】此题主要考查学生对菱形的性质及平移的性质的综合运用.关键是得出四边形OECF的面积是▱ABCD面积的.5、C【解题分析】
点P的坐标为(﹣3,2),把点P向右平移2个单位得点(-3+2,2),再向下平移5个单位得到点(-3+2,2-5).【题目详解】解:点P的坐标为(﹣3,2),把点P向右平移2个单位得(-3+2,2),再向下平移5个单位得到点P1(-3+2,2-5),即(-1,-3).故选C【题目点拨】本题考核知识点:平移和点的坐标.解题关键点:理解平移和点的坐标关系.6、C【解题分析】
根据菱形和矩形的性质即可判断.【题目详解】解:因为矩形的性质:对角相等、对边相等、对角线相等;菱形的性质:对角相等、对边相等、对角线互相垂直.所以矩形具有而菱形不一定具有的性质是对角线相等.故选:C.【题目点拨】本题主要考查矩形和菱形的性质,掌握矩形和菱形的性质是解题的关键.7、C【解题分析】
根据轴对称图形和中心对称图形的定义进行分析即可.【题目详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【题目点拨】考点:1、中心对称图形;2、轴对称图形8、C【解题分析】
设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【题目详解】设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故选C.【题目点拨】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.9、C【解题分析】
根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.【题目详解】解:在平面直角坐标系中,点位于第三象限,故选:.【题目点拨】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、C【解题分析】
根据一次函数的性质对各选项进行逐一分析即可.【题目详解】解:A、∵当x=1时,y=﹣5=﹣≠4,∴图象不经过点(1,4),故本选项错误;B、∵k=>0,b=﹣5<0,∴图象经过一三四象限,故本选项错误;C、∵k=>0,∴y随x的增大而增大,故本选项正确;D、∵k=>0,∴y随x的增大而增大,故本选项错误.故选C.【题目点拨】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,b<0时函数图象经过一、三、四象限是解答此题的关键.二、填空题(每小题3分,共24分)11、2【解题分析】
用因式分解法可以求出方程的两个根分别是3和1,根据等腰三角形的三边关系,腰应该是1,底是3,然后可以求出三角形的周长.【题目详解】x2-9x+18=0
(x-3)(x-1)=0
解得x1=3,x2=1.
由三角形的三边关系可得:腰长是1,底边是3,
所故周长是:1+1+3=2.
故答案为:2.【题目点拨】此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.12、A【解题分析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合题意,舍去),∴t的值为.故选A.【题目点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.13、25°.【解题分析】在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.14、y=-2x【解题分析】
把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式.【题目详解】设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【题目点拨】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.15、26【解题分析】如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴EF="120/20"=6,又BC=20,∴对角线之和为20+6=26,16、1【解题分析】
根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【题目点拨】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.17、6【解题分析】
先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.【题目详解】如图,连接BO,∵四边形ABCD是矩形,∴DC∥AB,∠DCB=90°∴∠FCO=∠EAO在△AOE与△COF中,∴△AOE≌△COF∴OE=OF,OA=OC∵BF=BE∴BO⊥EF,∠BOF=90°∵∠BEF=2∠BAC=∠CAB+∠AOE∴∠EAO=∠EOA,∴EA=EO=OF=FC=2在Rt△BFO与Rt△BFC中∴Rt△BFO≌Rt△BFC∴BO=BC在Rt△ABC中,∵AO=OC,∴BO=AO=OC=BC∴△BOC是等边三角形∴∠BCO=60°,∠BAC=30°∴∠FEB=2∠CAB=60°,∵BE=BF∴EB=EF=4∴AB=AE+EB=2+4=6,故答案为6.【题目点拨】本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.18、【解题分析】
首先把公因式3提出来,然后按照完全平方公式因式分解即可.【题目详解】解:==故答案为:.【题目点拨】此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.三、解答题(共66分)19、证明见解析【解题分析】试题分析:先根据垂直平分线的性质得所以∠1=∠2,∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即利用四条边相等的四边形是菱形即可证明试题解析:∵EF垂直平分AC,∴AO=OC,AE=CE,AF=CF,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.点睛:菱形的判定:四条边相等的四边形是菱形.20、(l)50分,80分,70分(2)候选人乙将被录用(3)候选人丙将被录用【解题分析】
(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【题目详解】(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:(分),乙的平均成绩为:(分),丙的平均成绩为:(分).由于,所以候选人乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么甲的个人成绩为:(分),乙的个人成绩为:(分),丙的个人成绩为:(分),由于丙的个人成绩最高,所以候选人丙将被录用.【题目点拨】解答本题的关键是读懂题意,通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.21、(1)3,24;(2)50,28;(3)估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.【解题分析】
(1)由统计图表可直接看出.(2)被调查的男生总数=不及格的人数÷它对应的比例,条形统计图中优秀的男生人数:用总数把其他三个等级的人数全部剪掉即可.(3)由(1)(2)可知,优秀56%,良好24%,该校八年级男生成绩等级为“良好”和“优秀”的学生人数=300×(良好占比+优秀占比).【题目详解】解:(1)3,24(2)被调查的男生总数3÷6%=50(人),条形统计图中优秀的男生人数:(3)该校八年级男生成绩等级为“良好”和“优秀”的学生人数.答:估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.【题目点拨】本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【解题分析】
(1)依据中位数和众数的定义进行计算即可;(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.【题目详解】(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店铺承接协议样本
- 版房屋买卖合同让您购房更安心
- 2024工程修路合作合同范本
- 2024新版中国农业发展银行质押担保借款合同
- 2024建设工程施工的合同书范本
- 公寓承包转让合同模板
- 单位保洁安全合同模板
- 民间售房合同模板
- 智能燃气报警器的智能检测与安全提醒考核试卷
- 油管供货合同模板
- 出库单样本12623
- Y2系列电机外形及安装尺寸(共2页)
- 三偏心蝶阀结构分析
- 补偿收缩混凝土应用技术规程JGJT1782009
- 机井资料表格(共9页)
- 豆类食物营养成分表
- 造纸及纸制品行业企业风险分级管控体系实施指南(DB37T 3149—2018)
- 农药英语词汇
- 第十二讲区域变质岩的鉴定与描述(1)
- 三类医疗器械医疗机构规章管理制度
- 上海版牛津英语5A M2U1 Grandparents教学案例
评论
0/150
提交评论