版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨市哈工大附中数学八下期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.5 B.3 C.2.4 D.2.52.已知不等式ax+b>0的解集是x<-2,则函数y=ax+b的图象可能是()A. B.C. D.3.若关于x的方程有两个相等的实数根,则常数c的值是A.6 B.9 C.24 D.364.下面哪个点在函数y=2x-1的图象上()A.(-2.5,-4) B.(1,3) C.(2.5,4) D.(0,1)5.下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.A.1 B.2 C.3 D.46.下列各组数中不能作为直角三角形三边长的是()A.7,9,12 B.5,12,13 C.1,, D.3,4,57.如图,在菱形中,对角线、相交于点,下列结论中不一定成立的是()A. B. C. D.8.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)10.下列根式中,与是同类二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;12.方程2x+10-x=1的根是______13.如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.14.如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.15.如图,利用函数图象可知方程组的解为______.16.若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.17.已知一个直角三角形的两条直角边的长分别为6cm、8cm,则它的斜边的中线长________cm.18.已知,是关于的方程的两根,且满足,那么的值为________.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.20.(6分)先化简,再求值:,其中x是不等式组的整数解.21.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.22.(8分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.23.(8分)为了响应“五水共治,建设美丽永康”的号召,某小区业委会随机调查了该小区20户家庭5月份的用水量,结果如下表:5月份用水量(吨)51011131520户数356321(1)计算这20户家庭5月份的平均用水量;(2)若该小区有800户家庭,估计该小区5月份用水量多少吨?24.(8分)如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.(1)求证:;(2)求点E的坐标和线段所在直线的解析式;(3)在M,N两点中任选一点求出它的坐标.25.(10分)某校八年级学生全部参加“禁毒知识竞赛”,从中抽取了部分学生,将他们的竞赛成绩进行统计后分为,,,四个等次,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(1)抽取了_______名学生成绩;(2)扇形统计图中等级所在扇形的圆心角度数是_________;(3)为估算全校八年级“禁毒知识竞赛”平均分,现将、、、依次记作分、分、分、分,请估算该校八年级知识竞赛平均分.26.(10分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.(1)在图①中,判断和形状.(填空)_______________________________________(2)在图②中,判断四边形的形状,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【题目详解】如图,连接EC,∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8−AE)2,解得:AE=5,故选A.【题目点拨】此题考查线段垂直平分线的性质,解题关键在于作辅助线.2、A【解题分析】
根据一次函数与一元一次不等式的关系,得到当x<-2时,直线y=ax+b的图象在x轴上方,然后对各选项分别进行判断.【题目详解】解:∵不等式ax+b>0的解集是x<-2,∴当x<-2时,函数y=ax+b的函数值为正数,即直线y=ax+b的图象在x轴上方.故选:A.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、B【解题分析】
根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.【题目详解】∵方程x2+6x+c=0有两个相等的实数根,∴△=62-4×1×c=0,解得:c=9,故选B.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4、C【解题分析】
将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.【题目详解】解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A错误;将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B错误;将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C正确;将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D错误;故选:C.【题目点拨】本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b,(k≠0,且k,b为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.5、C【解题分析】
根据立方根的概念即可求出答案.【题目详解】①2是8的立方根,故①正确;②4是64的立方根,故②错误;③是的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.故选C.【题目点拨】本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.6、A【解题分析】
根据勾股定理逆定理即可求解.【题目详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.【题目点拨】此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.7、D【解题分析】
根据菱形的性质即可一一判断【题目详解】解:∵四边形是菱形,∴,,,故A、B、C正确,故选:D.【题目点拨】本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.8、D【解题分析】【分析】分两种情况分析:当k>0或当k<0时.【题目详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【题目点拨】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.9、B【解题分析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.10、C【解题分析】
根据同类二次根式的定义,先化简,再判断.【题目详解】A.与被开方数不同,故不是同类二次根式;B.与被开方数不同,故不是同类二次根式;C.与被开方数相同,故是同类二次根式;D.与被开方数不同,故不是同类二次根式.故选C.【题目点拨】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.二、填空题(每小题3分,共24分)11、【解题分析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【题目详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC=故答案为【题目点拨】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.12、x=3【解题分析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.【题目详解】解:整理得:2x+10=x+1,方程两边平方,得:2x+10=x2+2x+1,移项合并同类项,得:x2=9,解得:x1=3,x2=-3,经检验,x2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【题目点拨】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.13、矩形5cm【解题分析】试题解析:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形.∴AC=BD∵AC=5cm∴BD=5cm14、2【解题分析】
作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;【题目详解】解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,在Rt△MGA′中,x2=(9﹣x)2+32,∴x=5,AA′=,∵sin∠MAK=,∴,∴MK=,∵AM∥OA′,AK=KA′,∴MK=KO,∵BN∥HA′∥AD,DA′=EA′,∴MO=ON,∴MN=4MK=2,故答案为2.【题目点拨】本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.15、【解题分析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【题目详解】观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组的解为,故答案为:【题目点拨】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.16、1;【解题分析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.【题目详解】解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.【题目点拨】本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.17、1【解题分析】
绘制符合题意的直角三角形,并运用勾股定理,求出其斜边的长度,再根据直角三角形斜边上的中线长度等于斜边长度的一半求解.【题目详解】解:如下图所示,假设符合题意,其中BC=6cm,AC=8cm,∠C=90°,点D为AB的中点.由勾股定理可得:==10(cm)又∵点D为AB的中点∴CD==1(cm)故答案为:1.【题目点拨】本题考查了勾股定理(直角三角形两条直角边的平方和等于斜边的平方),直角三角形斜边上的中线长度是斜边长度的一半,其中后者是解本题的关键.18、或【解题分析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【题目详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.三、解答题(共66分)19、(1)见解析;(2)见解析.【解题分析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【题目详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20、-1【解题分析】
先利用分式运算规则进行化简,解出不等式得到x的取值,要注意x的取值是不能使前面分式分母为0【题目详解】∵,∴解得:﹣3<x≤,∴整数解为﹣2,﹣1,0,根据分式有意义的条件可知:x=0,∴原式=【题目点拨】本题考查分式的化简与求值,本题关键在于解出不等式之后取x值时,需要注意不能使原分式分母为021、(1)-2,1;(2)x=3;(3)4m.【解题分析】
(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,注意验根;
(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【题目详解】解:(1),,所以或或,,;故答案为,1;(2),方程的两边平方,得即或,,当时,,所以不是原方程的解.所以方程的解是;(3)因为四边形是矩形,所以,设,则因为,,两边平方,得整理,得两边平方并整理,得即所以.经检验,是方程的解.答:的长为.【题目点拨】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.22、(1)详见解析;(2)1.【解题分析】
(1)根据已知条件推知四边形BCED是平行四边形,则对边相等:CE=BD,依据等量代换得到对角线AC=BD,则平行四边形ABCD是矩形;
(2)通过勾股定理求得BD的长度,再利用四边形BCED是平行四边形列式计算即可得解.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥BC.∵CE∥BD,∴四边形BCED是平行四边形.∴CE=BD.∵CE=AC,∴AC=BD.∴□ABCD是矩形.(2)解:∵□ABCD是矩形,AB=4,AD=3,∴∠DAB=90°,BC=AD=3,∴.∵四边形BCED是平行四边形,∴四边形BCED的周长为2(BC+BD)=2×(3+5)=1.故答案为(1)详见解析;(2)1.【题目点拨】本题考查矩形的判定,平行四边形的判定与性质,勾股定理,熟记性质是解题的关键.23、(1)11吨;(2)8800吨.【解题分析】
根据统计表信息:这20户家庭5月份的平均用水量为;根据(1)估计该小区5月份用水量为.【题目详解】解:这20户家庭5月份的平均用水量为(吨);估计该小区5月份用水量为吨.【题目点拨】本题考核知识点:平均数,用样本估计总体.解题关键点:熟记平均数公式.24、(1)详见解析;(2)点E的坐标是,;(3)点M的坐标为,或点N的坐标为.【解题分析】
(1)由已知条件可得,有根据,,即可得证;(2)由(1)中结论,可得,进而得出AE,得出点E坐标,设直线的解析式为,将点B坐标代入,即可得解;(3)①设直线的解析式为,将点,点代入,即可得出直线解析式,联立直线CE和直线OB,即可得出点M的坐标;②设直线DE的解析式为,将点D,点代入即可得出解析式,联立直线DE和直线OB,即可得出点N坐标..【题目详解】(1)∵正方形中,坐标系中∴又∵,正方形中∴(2)∵,∴∴又∵,∴点E的坐标是设直线的解析式为将点的对应值,代入求得∴所求解析式为(3)①求点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商铺出租合同模板
- 杭州市房屋租赁合同
- 车辆租赁协议公司对个人
- 厂房租赁合同篇
- 2025年合成材料阻燃剂项目发展计划
- 2024年跨境电商物流服务合同模板
- 2025年汽车安全气囊及装置合作协议书
- 2025年杭州客货运从业资格证考试教材
- 2024年项目协调与监理合同
- 2025年上饶货运从业资格证试题库及答案
- DK77系列线切割机床使用说明书(电气部份)_图文
- 俄罗斯联邦政府第782号决议 电梯安全技术规程(2009版)
- 天津建筑消防设施维护管理规定
- CNAS-TRC-014_2018《能源管理体系(EnMS)能源绩效参数和能源基准的建立方法及认证审核》
- 钢结构厂房施工方案(完整版)
- 正能量校园心理剧剧本-校园心理剧本范例
- 旋转式滤水器控制系统设计1
- 考试焦虑及相关因素研究
- 岗位风险告知卡(40个风险点)
- 质量体系审核不符合项案例
- 钻井工程岩石力学与破岩原理
评论
0/150
提交评论