福建省建宁县2024届数学八下期末质量跟踪监视模拟试题含解析_第1页
福建省建宁县2024届数学八下期末质量跟踪监视模拟试题含解析_第2页
福建省建宁县2024届数学八下期末质量跟踪监视模拟试题含解析_第3页
福建省建宁县2024届数学八下期末质量跟踪监视模拟试题含解析_第4页
福建省建宁县2024届数学八下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省建宁县2024届数学八下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是()A.七年级借阅文学类图书的人数最多B.八年级借阅教辅类图书的人数最少C.两个年级借阅文学类图书的人数最多D.七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同2.下表是两名运动员10次比赛的成绩,,分别表示甲、乙两名运动员测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A. B. C. D.无法确定3.某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A.x(27﹣3x)=75 B.x(3x﹣27)=75C.x(30﹣3x)=75 D.x(3x﹣30)=754.下列运算正确的是(

)A. B.=1C. D..5.在中,,,,则的长为()A.3 B.2 C. D.46.勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家()A.祖冲之 B.杨辉 C.刘徽 D.赵爽7.在矩形中,,,点是上一点,翻折,得,点落在上,则的值是()A.1 B.C. D.8.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.9.平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为()A.60° B.70° C.100° D.110°10.已知,下列不等式中正确是()A. B. C. D.二、填空题(每小题3分,共24分)11.在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.12.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.13.已知,在梯形中,,,,,那么下底的长为__________.14.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.15.在函数的图象上有两个点,,则的大小关系是___________.16.函数中,自变量的取值范围是.17.如图,在直角坐标系中,有菱形OABC,A点的坐标是(5,0),双曲线经过点C,且OB•AC=40,则k的值为_________.18.1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.三、解答题(共66分)19.(10分)如图,平行四边形中,点分别在上,且与相交于点,求证:.20.(6分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.(1)求A种、B种设备每台各多少元?(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?21.(6分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.22.(8分)化简或解方程:(1)化简:(2)先化简再求值:,其中.(3)解分式方程:.23.(8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?24.(8分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.(1)不等式的解集是;(2)求直线的解析式及的面积;(3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.25.(10分)把下列各式因式分解:(1)(x2﹣9)+3x(x﹣3)(2)3ax2+6axy+3ay226.(10分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:时间…4810162021222324…温度/℃……(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;(2)通过图表分析发现,冷柜中的温度是时间的函数.①当时,写出符合表中数据的函数解析式;②当时,写出符合表中数据的函数解析式;(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据扇形统计图的特点即可判断.【题目详解】解:A.七年级借阅文学类图书的人数最多,正确;B.八年级借阅教辅类图书的人数最少,正确;C.两个年级借阅文学类图书的人数最多,正确;由题意可得本题的总量无法确定,故不能确定哪个年级借阅图书的具体人数.故选:D.【题目点拨】此题主要考查扇形统计图的信息,解题的关键是熟知扇形统计图的特点.2、A【解题分析】【分析】先求甲乙平均数,再运用方差公式求方差.【题目详解】因为,,,所以,=,=,所以,故选A【题目点拨】本题考核知识点:方差.解题关键点:熟记方差公式.3、C【解题分析】

设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解【题目详解】解:设矩形宽为xm,则矩形的长为(30﹣3x)m,根据题意得:x(30﹣3x)=1.故选:C.【题目点拨】本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.4、D【解题分析】【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.【题目详解】A.,不是同类二次根式,不能合并,故本选项错误;B.=,故本选项错误;C.,不是同类二次根式,不能合并,故本选项错误;D..故本选项正确.故选:D【题目点拨】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.5、D【解题分析】

根据,可得,再把AB的长代入可以计算出CB的长.【题目详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.【题目点拨】此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.6、D【解题分析】

在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.【题目详解】在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.故选D.【题目点拨】我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.7、D【解题分析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.【题目详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,∴BC`=BC=5,EC`=CE=x,DE=CD−CE=3−x.在Rt△ABC`中,由勾股定理得:AC`=5−3=16,∴AC`=4,DC`=5−4=1.在Rt△DEC`中,由勾股定理得:EC`=DE+DC`,即x=(3−x)+1,解得:x=.故选D【题目点拨】此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算8、D【解题分析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.9、B【解题分析】试题分析:根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故选B.10、B【解题分析】

根据不等式的性质即可得出答案.【题目详解】A:若,则,故A错误;B:若,则,故B正确;C:若,则,故C错误;D:若,则,故D错误;故答案选择B.【题目点拨】本题考查的是不等式的性质,比较简单,需要熟练掌握不等式的相关性质.二、填空题(每小题3分,共24分)11、(-1,1)【解题分析】

根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【题目详解】解:将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为(-1,1).故答案为(-1,1).【题目点拨】本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、6<v<2或v=4.2【解题分析】

利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【题目详解】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,1)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=2x+1;将(0,1)、(70,420)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+1;将(0,1)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.2x+1.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.故答案为6<v<2或v=4.2【题目点拨】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.13、11【解题分析】

首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.【题目详解】解:如图,过A作AE∥DC交BC与E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=EC=5,AE=CD,∵AB=CD=6,∴AE=AB=6,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=6,∴BC=6+5=11,故答案为11.【题目点拨】此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.14、【解题分析】

先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【题目详解】解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,随机摸出1张,卡片上的图形是中心对称图形的概率是,故答案为:.【题目点拨】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.15、y1>y2【解题分析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.16、x≠1【解题分析】,x≠117、12【解题分析】

过点C作于D,根据A点坐标求出菱形的边长,再根据菱形的面积求得CD,然后利用勾股定理求得OD,从而得到C点坐标,代入函数解析式中求解.【题目详解】如图,过点C作于D,∵点A的坐标为(5,0),∴菱形的边长为OA=5,,,∴,解得,在中,根据勾股定理可得:,∴点C的坐标为(3,4),∵双曲线经过点C,∴,故答案为:12.【题目点拨】本题考查了菱形与反比例函数的综合运用,解题的关键在于合理作出辅助线,求得C点的坐标.18、6174【解题分析】

用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.【题目详解】解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,

用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,

用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,

用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,

用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,

用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…

可知7次变换之后,四位数最后都会停在一个确定的数6174上.

故答案为6174.【题目点拨】本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.三、解答题(共66分)19、见解析【解题分析】

连接AF,CE,由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,又由BE=DF,证得AE=CF,即可证得四边形AECF是平行四边形,从而证得结论.【题目详解】连接AF,CE,

∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵BE=DF,

∴AB-BE=CD-DF,

∴AE=CF,

∴四边形AECF是平行四边形,

∴PA=PC.【题目点拨】本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF是平行四边形是解此题的关键.20、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.【解题分析】

(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.【题目详解】(1)设每台A种设备x元,则每台B种设备(x+700)元,根据题意得:,解得:x=500,经检验,x=500是原方程的解,∴x+700=1.答:每台A种设备500元,每台B种设备1元;(2)设购买A种设备m台,则购买B种设备(20﹣m)台,根据题意得:500m+1(20﹣m)≤17000,解得:m≥2.答:A种设备至少要购买2台.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.21、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.【解题分析】分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;

(2)把y=14代入(1)中求得的函数关系式求出x的值即可.详解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得,解得.∴一次函数的表达式为y=1.8x+1.(2)当y=14时,代入得14=1.8x+1,解得x=-2.∴华氏温度14℉所对应的摄氏温度是-2℃.点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.22、(1)(2)(3)【解题分析】

(1)先通分,然后利用同分母分式加减法的法则进行计算即可;(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.【题目详解】(1)原式=;(2)原式==,当,时,原式;(3)两边同时乘以(x+2)(x-2),得:,解得:,检验:当时,(x+2)(x-2)≠0,所以x=10是原分式方程的解.【题目点拨】本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.23、甲将被录取【解题分析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.考点:加权平均数.24、(1);(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论