版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数第1课时变量与常量导入新课数学上常用常量与变量来刻画各种运动变化大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢?探究新知思考1.汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,填写下表,s的值随t的值的变化而变化吗?t/h12345s/km60120180240300请说明你的道理:速度×时间路程=____________(1)在以上这个过程中,变化的量是________________.不变化的量是_____________.(2)试用含t的式子表示s.s=____.时间t、速度60千米/时60t
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.路程sst
2.每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售出票x
张,票房收入为y
元,y的值随x的值的变化而变化吗?(1)早场票房收入=日场票房收入=晚场票房收入=请说明道理:票房收入=10×205=2050(元)10×150=1500(元)10×310=3100(元)售价×售票张数10x(2)在以上这个过程中,变化的量是________________________.不变化的量是_________.(2)试用含x的式子表示y,y=______.售票张数x、票房收入y
售价10元这个问题反映了票房收入____随售票张数_____的变化过程.yx圆面积S与圆的半径R之间的关系式是
;
其中变化的量是
;不变化的量是
.3.如图所示,圆形水波慢慢地扩大,在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S
分别为多少?S的值随r的变化而变化吗?S=πr2πS,r这个问题反映了圆的面积S随半径R的变化过程.S1=π102S2=π202S3=π3024.用10m长的绳子围一个矩形.当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值随x的值变化而变化吗请说明你的道理:矩形周长=____________2(x+y)当x=3m,y=10÷2-3=2m当x=3.5m,y=10÷2-3.5=1.5m当x=4m,y=10÷2-4=1m当x=4.5m,y=10÷2-4.5=0.5m这个问题反映了矩形的邻边长y随边长x的变化而变化.知识归纳上述运动变化过程中出现的数量,你发现了什么?有些量的数值是变化的,例如时间t,路程s,售出票数x……有些量的数值是始终不变的,例如速度60km/h,票价10元/张……在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.练习1.某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为xt,月应交水费y元.变量:月用水量xt,月应交水费y元;常量:自来水价4元/t.指出下列问题中的变量和常量:2.某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元.变量:通话时间tmin,话费卡中的余额w元;常量:通话费0.2元/min.3.水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长和直径之比)为π.变量:半径r,圆周长C;常量:圆周率π.4.把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.变量:第一个抽屉x本,第二个抽屉y本;常量:10本书.探究新知思考问题1~4中是否各有两个变量?同一个问题中的变量之间有什么联系?汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,填写下表,s的值随t的值的变化而变化吗?t/h12345s/km60120180240300你发现了什么?知识归纳四个问题中每个问题的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一确定的值与其对应.例题与练习(1)球的表面积S(cm2)与球的半径R(cm)的关系式是S=4πR2;(2)一物体自高处自由落下,这个物体运动的距离h(m)与它下落的时间t(s)之间的关系式是h=
gt2(其中g取9.8m/s2);(3)已知橙子1.8元/kg,则购买数量x(kg)与所付款w(元)之间的关系式是w=1.8x.解:(1)S=4πR2,常量是4,π,变量是S,R;(2)h=
gt2,常量是
,g,变量是h,t;(3)w=1.8x,常量是1.8,变量是w,x.例1分析下列关系中的变量与常量.例2观察图表,根据表格中的数据回答问题:梯形个数12345…图形周长58111417…(1)设图形的周长为l,梯形的个数为n,试写出l与n的关系式;(2)在上述变化过程中,常量、变量分别是什么?(3)求n=11时图形的周长.解:(1)l=3n+2;(2)常量是3,2,变量是l,n;(3)当n=11时,l=3×11+2=35,即此时图形的周长为35.例题与练习练习1.下表是某报纸公布的世界人口数据情况,表中的变量(
)年份19571974198719992010人口数30亿40亿50亿60亿70亿A.仅有一个,是年份B.仅有一个,是人口数C.有两个,一个是人口数,另一个是年份D.一个也没有C2.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=____________,其中_________是常量,_________是变量.10+5x10,5y,x3.写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)甲、乙两地相距
ykm,小明骑自行车以每小时30km的速度从甲地驶向乙地,试用行驶时间t(h)表示小明离乙地的距离s(km).解:(1)α=90°-β,α和β是变量,90°是常量;(2)s=y-30t,s和t是变量,y和-30是常量.课堂小结常量与变量常量与变量的概念列出变量之间的关系式常量:数值始终不变的量变量:数值发生变化的量人教版数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数第2课时函数导入新课1.圆柱的体积公式V=πr2h,V表示体积,r表示底面的半径,h表示圆柱的高,其中常量是_____,变量是____________.πV,r,h2.如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.
在上述例子中,每个变化过程中的两个变量,当其中一个变量变化时,另一个变量也随之发生变化;当一个变量确定时,另一个变量也随之确定.探究新知思考1.下图是体检时的心电图,图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的值与其对应吗?2.下表是我国人口数统计表,年份与人口数可以分别记作两个变量x和y.对于表中每一个确定的年份x,都对应着一个确定的人口数y吗?年份人口数/亿198410.34198911.06199411.76199912.52201013.71思考上面两个问题,你学到了什么?1中每个时间x都对应一个生物电流y;2中每个年份都对应一个确定的人口数.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.知识归纳你能从上述问题中得到什么结论吗?指出下列问题中的自变量以及自变量的函数:1.汽车以60km/h的速度匀速行驶,行驶路程为skm,行驶时间为th.2.在我国人口数统计表,年份与人口数可以分别记作两个变量x和y.t是自变量,s是t的函数.x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.什么是函数值?中国人口数统计表你发现了什么?每个年份对应一个人口数年份人口数/亿198410.34198911.06199411.76199912.52201013.71探究新知例1汽车油箱中有汽油50L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,耗油量为0.1L/km.油箱中的剩油量、汽车耗油量与油箱中原有油量之间有怎样的数量关系?(1)写出表示y与x的函数关系的式子;解:行驶路程x是自变量,油箱中的油量y是x的函数,它们的关系为:y=50-0.1x像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的解析式.0.1x表示的意义是什么?0.1x表示行驶过程中消耗的总油量.(2)指出自变量x的取值范围;
确定自变量的取值范围时,不仅要考虑使函数解析式有意义,而且还要注意各变量所代表的实际意义.归纳解析:仅从式子y=50-0.1x看,x可以取任意实数.但是考虑到x代表的实际意义为行驶路程,因此x不能取负数.行驶中的耗油量为0.1x,它不能超过邮箱中现有油量50,即:0.1x≤50.因此,自变量x的取值范围是0≤x≤500.像这样,使函数有意义的自变量的取值叫做自变量的取值范围.(3)汽车行驶200km时,油箱中还有多少油?解析:汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值.将x=200带入y=50-0.1x,得:y=50-0.1×200=30答:汽车行驶200km时,油箱中还有30L汽油.练习1.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式.(1)改变正方形的边长x,正方形的面积S随之改变.S=x2自变量自变量的函数(2)每分钟向一水池注水0.1m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化.y=0.1x自变量自变量的函数(3)秀水村的耕地面积是106m2,这个村人均占有耕地面积y(单位:m2)随这个村人数n的变化而变化.自变量自变量的函数(4)水池中有水10L,此后每小时漏水0.05L,水池中的水量V(单位:L)随时间t(单位:h)的变化而变化.V=10-0.05t自变量自变量的函数2.梯形的上底长2cm,高3cm,下底长xcm大于上底长,但不超过5cm.写出梯形面积S关于x的函数解析式及自变量x的取值范围.2<x≤5S=(2+x)×3;例题与练习例2下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg的物体,它的原长为10cm,挂上重物后弹簧的长度y(cm)随所挂重物的质量x(kg)的变化而变化,每挂1kg物体,弹簧伸长0.5cm;解:(1)y=10+
x,其中x是自变量,y是自变量的函数;(2)V=30a2,其中a是自变量,V是自变量的函数.例2下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(2)设一长方体盒子的高为30cm,底面是正方形,底面边长a(cm)改变时,这个长方体的体积V(cm3)也随之改变.例3求下列自变量的取值范围.解:x为全体实数解得x≥1;解:2x-1>0,例4水箱内原有水200L,7:30打开水龙头,以2L/min的速度放水,设经tmin时,水箱内存水yL.(1)求y与t的函数关系式和自变量的取值范围;解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100.∴0≤t≤100;(2)∵7:55-7:30=25(min),∴当t=25时,y=200-2t=200-50=150.∴当7:55时,水箱内还有水150
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生分年级德育实施方案
- 2024年度智能家居产品租赁合同
- 2024版智能家居系统设计与安装施工合同
- 2024版建筑工程设计合同书
- 2024年度贷款人放款义务合同
- 2024年度区块链技术应用平台代建合同
- 典当合同签署流程制度
- 2024年度智能车辆识别一体机技术转让合同
- 2024年度大米出口销售合同
- 2024年度智慧城市技术服务合同
- 牙体牙髓病学实践智慧树知到答案2024年浙江中医药大学
- TCECA-G 0307-2024 数字化碳管理平台 建设评价指南
- 医疗行业智能化医疗设备维修与保养方案
- 预制菜战略合作协议书合同范本
- 第02课 我国的社会主义市场经济体制(课件)
- 统编版(2024)七年级上册道德与法治3.1《做有梦的少年》教案
- 部编版九下历史《全册问答式背诵手册》
- 2024-2025学年八年级地理上册 第一章 单元测试卷(人教版)
- 2024年秋季新外研版三年级上册英语课件 Appendices Mulan
- DB50-T 537-2024 旅游交通标志设置规范
- 2024年秋季新人教版一年级上册数学课件 第3单元 认识立体图形第2课时 认识立体图形
评论
0/150
提交评论