版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省巴中巴州区七校联考数学八年级第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各组数中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.5、12、13 C. D.7、24、252.下面的图形中,既是中心对称又是轴对称的图形是()A. B. C. D.3.若分式的值为0,则的值是()A. B. C. D.4.一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为()A.y=﹣4x﹣2 B.y=﹣4x+2 C.y=﹣4x﹣8 D.y=﹣4x+86.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.97.某商务酒店客房有间供客户居住.当每间房每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出元的费用.当房价定为多少元时,酒店当天的利润为元?设房价定为元,根据题意,所列方程是()A. B.C. D.8.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.9.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中“■”和“▲”对应的一组数字可能是()A.8和1 B.16和2C.24和3 D.64和810.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形 B.当AC⊥BD时,四边形ABCD是菱形C.当AC=BD时,四边形ABCD是矩形 D.当∠ABC=90°时,四边形ABCD是正方形11.在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.450 B.600 C.750 D.120012.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟二、填空题(每题4分,共24分)13.一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.14.已知关于的一元二次方程有两个相等的实数根,则的值是__________.15.四边形的外角和等于.16.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.17.在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是_____.(写出一种情况即可)18.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.三、解答题(共78分)19.(8分)“垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。(1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;(2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.20.(8分)已知y﹣2与x成正比例,当x=2时,y=1.(1)求y与x之间的函数解析式.(2)在所给直角坐标系中画出函数图象.(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.21.(8分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(10分)阅读材料,解决问题材料一:《孟子》中记载有一尺之棰,日取其半,万世不竭,其中蕴含了“有限”与“无限”的关系.如果我们要计算到第n天时,累积取走了多长的木棒?可以用下面两种方法去解决:方法一:第n天,留下了尺木棒,那么累积取走了尺木棒.方法二:第1天取走了尺木棒,第2天取走了尺木棒,……第n天取走了尺木棒,那么累积取走了:尺木棒.设:……①由①×得:……②①-②得:则:材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?据说当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确的答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+4+…+100①,则S=100+99+98+…+3+2+1②①+②得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×(1+100)即请用你学到的方法解决以下问题:(1)计算:;(2)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层的2倍,问塔的顶层共有多少盏灯?(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动,某一周,这款软件的激活码为下面数学问题的答案:已知一列数1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……其中第1项是,接下来的两项是,,再接下来的三项是,,,以此类推,求满足如下条件的正整数N:,且这一列数前N项和为2的正整数幂,请求出所有满足条件的软件激活码正整数N的值.23.(10分)解方程:(1)x(2x+3)=4x+6计算:(2)(3)24.(10分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.25.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.26.已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】【分析】根据勾股定理的逆定理,只要验证每组数中的两个较小的数的平方和等于最大的边的平方,即可构成直角三角形;否则,则不能构成.【题目详解】A、32+42=25=52,故能构成直角三角形;B、52+122=169=132,故能构成直角三角形;C、22+()2=7≠()2,故不能构成直角三角形;D、72+242=625=252,故能构成直角三角形,故选C.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、D【解题分析】
根据轴对称图形与中心对称图形的概念进行判断即可.【题目详解】A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,也是中心对称图形.故正确.故选D.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解题分析】
解:根据分式为0的条件,要使分式的值为0,必须.解得故选A.4、C【解题分析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像5、A【解题分析】
上下平移时k值不变,b值是上加下减,依此求解即可.【题目详解】解:将直线y=﹣4x向下平移2个单位长度,得到直线y=﹣4x﹣2;故选:A.【题目点拨】此题考查了一次函数图象与几何变换.要注意求直线平移后的解析式时k的值不变,只有b发生变化.6、D【解题分析】
根据是一个完全平方式,可得,据此求解.【题目详解】解:∵是一个完全平方式∴∴故选:D【题目点拨】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.7、D【解题分析】
设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【题目详解】设房价定为x元,根据题意,得故选:D.【题目点拨】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.8、C【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误,故选C.【题目点拨】本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.9、B【解题分析】
可以看出此题是用平方差公式分解因式,可以根据整式乘法与因式分解是互逆运算变形得出.平方差公式:a2-b2=(a+b)(a-b).【题目详解】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-1,则■=1.故选B.【题目点拨】此题考查了学生用平方差公式分解因式的掌握情况,灵活性比较强.10、D【解题分析】
根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.【题目详解】解:∵四边形ABCD是平行四边形,则A、当AB=BC时,四边形ABCD是菱形,正确;B、当AC⊥BD时,四边形ABCD是菱形,正确;C、当AC=BD时,四边形ABCD是矩形,正确;D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;故选:D.【题目点拨】本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.11、B【解题分析】分析:根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.详解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:B.点睛:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.12、A【解题分析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.二、填空题(每题4分,共24分)13、3或1【解题分析】
分别表示多边形的每一个内角及与内角相邻的外角,根据题意列方程求解即可.【题目详解】解:因为:多边形的内角和为,又每个内角都相等,所以:多边形的每个内角为,而多边形的外角和为,由多边形的每个内角都相等,则每个外角也都相等,所以多边形的每个外角为,所以,所以,所以或解得:,经检验符合题意.故答案为:3或1.【题目点拨】本题考查的是多边形的内角和与外角和,多边形的一个内角与相邻的外角互补,掌握相关的性质是解题的关键.14、【解题分析】
根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【题目详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.15、360°.【解题分析】
解:n(n≥3)边形的外角和都等于360°.16、±1.【解题分析】试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.考点:一次函数综合题.17、AC⊥BD(答案不唯一)【解题分析】
依据菱形的判定定理进行判断即可.【题目详解】解:∵四边形ABCD为平行四边形,∴当AC⊥BD时,四边形ABCD为菱形.故答案为AC⊥BD(答案不唯一).【题目点拨】本题主要考查菱形的判定,平行四边形的性质,熟悉掌握菱形判定条件是关键.18、1【解题分析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【题目详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.三、解答题(共78分)19、(1)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨,乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;(2)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨.【解题分析】
(1)设出甲城市运往垃圾场的垃圾为吨,从而表示出两个城市运往两个垃圾场的垃圾的吨数,再根据路程计算出总运输量,于是就得到一个总运输量与的函数关系式,根据函数的增减性和自变量的取值范围,确定何时总运输量最小,得出运输方案;(2)利用运输量不低于2600吨,得出自变量的取值范围,再依据函数的增减性做出判断,制定方案.【题目详解】解:(1)甲城市运送不可回收垃圾到垃圾场吨,总运输量为吨.千米,随增大而增大当取最小,最小由题意可知,解得:当时,运输量最小;甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨(2)由①可知:,又,解得:,此时当时,运输量最小;运输方案最合理甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨【题目点拨】本题考查一次函数的应用,一元一次不等式组应用等知识,准确的理解数据之间的关系,设合适的未知数,得到总运输量与自变量的函数关系式是解决问题的关键.20、(1)y=2x+2;(2)如图见解析;(3)-2≤x≤2。【解题分析】
(1)根据正比例的定义设y-2=kx(k≠2),然后把已知数据代入进行计算求出k值,即可得解;
(2)利用描点法法作出函数图象即可;
(3)根据图象可得结论.【题目详解】(解:(1)∵y-2与x成正比例,
∴设y-2=kx(k≠2),
∵当x=2时,y=1,
∴1-2=2k,
解得k=2,
∴y-2=2x,
函数关系式为:y=2x+2;
(2)当x=2时,y=2,
当y=2时,2x+2=2,解得x=-1,
所以,函数图象经过点(2,2),(-1,2),
同理,该函数图象还经过点(1,4),(-2,-2),(-3,-4).
函数图象如图:
.
(3)由图象得:当-2≤y≤2时,自变量x的取值范围是:-2≤x≤2.【题目点拨】本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.21、(1)16,C(0.5,0);(2);(3)4千米.【解题分析】
(1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;(2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;(3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.【题目详解】(1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,点C的横坐标为:1-8÷16=0.5,∴点C的坐标为(0.5,0),故答案为千米/小时;(0.5,0);(2)设线段对应的函数表达式为,∵,,∴,解得:,∴线段对应的函数表达式为;(3)当时,,∴24-20=4,答:当小帅到达乙地时,小泽距乙地还有4千米.【题目点拨】本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.22、(1);(2)塔的顶层共有3盏灯;(3)18或95【解题分析】
(1)根据材料的方法可设S=1+3+9+27+…+3n.则3S=3(1+3+9+27+…+3n),利用即可解答.(2)设塔的顶层由x盏灯,根据一座7层塔共挂了381盏灯,可列方程.根据材料的结论即可解答.(3)由题意求得数列的分n+1组,及前n组和S=2n+1-2-n,及项数为,由题意可知:2n+1为2的整数幂.只需最后一组将-2-n消去即可,求出n值即可求得N的值【题目详解】解:(1)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,
∴3S-S=(3+9+27+…+3n+3n+1)-(1+3+9+27+…+3n),
∴2S=3n+1-1,(2)设塔的顶层由x盏灯,依题意得:
x+21x+22x+23x+24x+25x+26x=381
解得:x=3,
答:塔的顶层共有3盏灯.(3)由题意这列数分n+1组:前n组含有的项数分别为:1,2,3,…,n,最后一组x项,根据材料可知每组和公式,求得前n组每组的和分别为:21-1,22-1,23-1,…,2n-1,
总前n组共有项数为N=1+2+3+…+n=前n所有项数的和为Sn=21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=2n+1-2-n,
由题意可知:2n+1为2的整数幂.只需最后一组x项将-2-n消去即可,
则①1+2+(-2-n)=0,解得:n=1,总项数为,不满足10<N<100,②1+2+4+(-2-n)=0,解得:n=5,总项数为,满足10<N<100,③1+2+4+8+(-2-n)=0,解得:n=13,总项数为,满足10<N<100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总项数为,不满足10<N<100,
∴所有满足条件的软件激活码正整数N的值为:18或95。【题目点拨】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.23、(1)(2);(3)【解题分析】
(1)方程整理为一般式后,利用因式分解法求解可得;(2)先化简各二次根式,再合并即可得;(3)原式变形为=,再进一步计算可得.【题目详解】解:(1)x(2x+3)=4x+6,2x2+3x=4x+6,2x2﹣x﹣6=0,(x﹣2)(2x+3)=0,∴x1=2,x2=;(2)原式=;(3)原式====.【题目点拨】本题主要考查解一元二次方程、二次根式的混合运算,解题的关键是掌握解一元二次方程的几种常用方法、二次根式的混合运算顺序和运算法则.24、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)【解题分析】
(1)找到三角形各顶点与原点对称点,再连接各点即可;(2)根据平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会员制社交电商建立长期稳定的客户关系考核试卷
- 发动机的参数辨识和系统辨识方法考核试卷
- 创业空间的行业协会与交流平台考核试卷
- 电力设备的冷却与散热控制考核试卷
- DB11T 594.3-2013 地下管线非开挖铺设工程施工及验收技术规程 第3部分:夯管施工
- DB11∕T 1824-2021 森林消防综合应急救援队伍装备使用和维护规范
- can i课件教学课件
- 中位数课件教学课件
- 2024年高考语文二轮复习:信息类阅读综合测试(解析版)
- 节日课文课件教学课件
- 杭州萧山国际机场控制区通行证考试题库附有答案
- 医学美容技术专业《医学美容技术顶岗实习》课程标准
- 旋挖成孔灌注桩工程技术规程
- 2024届四川省绵阳市高三上学期一诊模拟考试生物试题(解析版)
- 2024年1月江苏苏州城市学院高层次人才招考聘用143人笔试历年典型考题及考点研判与答案解析
- 饲料加工员试题及答案
- DZ∕T 0288-2015 区域地下水污染调查评价规范(正式版)
- 人教版九年级化学暑假衔接课程05分子和原子 讲义
- 生产部门年度培训计划
- 0-3岁婴幼儿亲子关系与互动智慧树知到答案2024年杭州师范大学
- 铁路车站中间站
评论
0/150
提交评论