山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题含解析_第1页
山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题含解析_第2页
山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题含解析_第3页
山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题含解析_第4页
山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市峄城区底阁镇2024届八年级数学第二学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是()A.(1+x)2=24.2 B.20(1+x)2=24.2C.(1﹣x)2=24.2 D.20(1﹣x)2=24.22.如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为()A.2 B.4 C.6 D.23.分别以下列三条线段组成的三角形不是直角三角形的是()A.3、4、5 B.6、8、10 C.1、1、 D.6、7、84.如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为()A.(1,0) B.(,0) C.(,0) D.(2,0)5.如图,矩形中,,,点从点出发,沿向终点匀速运动.设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B.C. D.6.点关于原点对称点的坐标是()A. B. C. D.7.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1 B.2 C.3 D.49.下列式子中,属于最简二次根式的是()A. B. C. D.10.如图,已知的顶点A和AB边的中点C都在双曲线的一个分支上,点B在x轴上,则的面积为A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.如图,在矩形中,于点,对角线、相交于点,且,,则__________.12.分解因式:=______.13.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.14.有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;15.梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.16.已知实数a在数轴上的位置如图所示,化简:+|a﹣1|=_____.17.在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.18.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.三、解答题(共66分)19.(10分)某校八年级的体育老师为了解本年级学生对球类运动的爱好情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图所示的两幅不完整的统计图[说明:每位学生只选一种自己最喜欢的一种球类)请根据这两幅图形解答下列问题:(1)此次被调查的学生总人数为人.(2)将条形统计图补充完整,并求出乒乓球在扇形中所占的圆心角的度数;(3)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共有多少人?20.(6分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?21.(6分)(1)求不等式组的整数解.(2)解方程组:22.(8分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN=""°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)23.(8分)直线与抛物线交于、两点,其中在轴上,是抛物线的顶点.(1)求与的函数解析式;(2)求函数值时的取值范围.24.(8分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;(3)求四边形EFPH的面积.25.(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.26.(10分)如图,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)证明:AE⊥BF;(2)证明:DF=CE.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.【题目详解】解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.【题目点拨】本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.2、D【解题分析】

由条件可知BD∥AE,则可知当DE⊥BC时,DE有最小值,可证得四边ACDE为矩形,可求得答案.【题目详解】∵四边形ADBE为平行四边形,∴AE∥BC,∴当DE⊥BC时,DE有最小值,如图,∵∠ACB=90°,∴四边形ACDE为矩形,∴DE=AC,在Rt△ABC中,由勾股定理可求得AC==2,∴DE的最小值为2,故选:D.【题目点拨】本题主要考查平行四边形的性质和矩形的判定和性质,确定出DE取最小值时的位置是解题的关键.3、D【解题分析】

根据勾股定理的逆定理可知,两较短边的平方和等于最长边的平方,逐项验证即可.【题目详解】A.,可组成直角三角形;B.,可组成直角三角形;C.,可组成直角三角形;D.,不能组成直角三角形.故选D.【题目点拨】本题考查勾股定理的逆定理,熟练掌握两较短边的平方和等于最长边的平方是解题的关键.4、C【解题分析】

根据点D的画法可得出AD平分∠OAB,由角平分线的性质结合相似三角形的性质可得出∠OBA=∠OAB,利用二角互补即可求出∠OBA=∠OAP=30°,通过解含30度角的直角三角形即可得出点P的坐标.【题目详解】解:由点D的画法可知AD平分∠OAB.∵△OPA∽△OAB,∴∠OAP=∠OBA=∠OAB.∵∠OAB+∠OBA=∠OAB+∠OAB=90°,∴∠OAB=60°,∠OAP=30°,∴AP=2OP.在Rt△OAP中,∠AOP=90°,OA=2,,∴OP=,∴点P的坐标为(,0).故选:C.【题目点拨】本题考查了基本作图、角平分线的性质、相似三角形的性质以及解含30度角的直角三角形,求出∠OAP=30°是解题的关键.5、A【解题分析】

当点P在CD上运动时,如下图所示,连接AC,根据平行线之间的距离处处相等,可判断此时不变,且=S△ABC,根据三角形的面积公式即可得出结论.【题目详解】解:当点P在CD上运动时,如下图所示,连接AC根据平行线之间的距离处处相等,故此时的面积为不变,故可排除C、D此时=S△ABC=,故可排除B故选A.【题目点拨】此题考查的是函数的图象,掌握函数图象中横纵坐标的意义和平行线之间的距离处处相等是解决此题的关键.6、A【解题分析】

根据原点对称的点的坐标特点,横坐标、纵坐标都互为相反数,求出对称点的坐标【题目详解】由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数可得点关于坐标原点的对称点的坐标为,故答案为A【题目点拨】本题了考查了关于原点对称的坐标的性质以及求解,掌握原点对称的坐标特点是解题的关键7、B【解题分析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【题目点拨】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.8、B【解题分析】

根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【题目详解】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选B.【题目点拨】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9、D【解题分析】

直接利用最简二次根式的定义分析得出答案.【题目详解】解:、,故此选项错误;、,故此选项错误;、,故此选项错误;、是最简二次根式,故此选项正确.故选:.【题目点拨】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.10、C【解题分析】

,结合图形可得:S△ABO=S△AOM+S△AMB,分别求解出S△AOM、S△AMB的值,过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y),设B的坐标为(a,0),已知点C是线段AB的中点,由点A位于反比例函数的图象上可得:xy=4,即S△AOM=2,接下来,根据点C的坐标为(),同理可解得S△CDO的面积,接下来,由S△AMB=×AM×BM,MB=|a−x|,AM=y,可解得S△AMB,即可确定△ABO的面积.【题目详解】解:过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y)∵顶点A在双曲线y=(x>0)图象上∴xy=4∵AM⊥OB∴S△AMO=×AM×OM=×xy,S△AMB=×AM×BM(三角形的面积等于一边与此边上高的乘积的一半)∵S△AMO=×xy,xy=4∴S△AMO=2设B的坐标为(a,0)∵点C是线段AB的中点点A、B坐标为(x,y)、(a,0)∴点C坐标为()∵CD⊥OB点C坐标为()∴S△CDO=×CD×OD=×()×()=2(三角形的面积等于一边与此边上高的乘积的一半)故ay=2∵S△AMB=×AM×BM,MB=|a−x|,AM=y∴S△AMB=×|a−x|×y=4∵S△ABO=S△AOM+S△AMB,S△AOM=2,S△AMB=4∴S△ABO=6即△ABO的面积是6,答案选C.【题目点拨】本题考查反比例函数系数k的几何意义,熟练掌握计算法则是解题关键.二、填空题(每小题3分,共24分)11、【解题分析】

由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AE的长.【题目详解】在矩形中,AO=CO=BO=DO∵,,∴BE=EO∵AE⊥BD∴垂直平分.∴AB=AO∴AB=AO=BO∴为等边三角形.∴∠BAO=60°∵AE⊥BD∴∠BAE=30°∴,∴.故答案为:【题目点拨】本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.12、x(x+2)(x﹣2).【解题分析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.13、1260【解题分析】

首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【题目详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【题目点拨】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.14、【解题分析】【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.【题目详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=故答案为:【题目点拨】本题考核知识点:概率.解题关键点:掌握概率的求法.15、17【解题分析】

过作构造平行四边形及相似三角形,利用平行四边形及相似三角形的性质可得答案.【题目详解】如图,过作交于,交于,因为AD∥BC,EF∥BC,所以四边形四边形,四边形都为平行四边形,则,因为,所以,因为EF∥BC,所以,所以,因为2AE=BE,,,所以,所以,所以.故答案为:.【题目点拨】本题考查等腰梯形中通过作腰的平行线构造平行四边形及相似三角形,考查平行四边形的性质及相似三角形的性质,掌握这些性质是解题的关键.16、1﹣2a.【解题分析】

利用数轴上a的位置,进而得出a和a-1的取值范围,进而化简即可.【题目详解】由数轴可得:﹣1<a<0,则+|a﹣1|=﹣a+1﹣a=1﹣2a.故答案为1﹣2a.【题目点拨】此题主要考查了二次根式的性质与化简,绝对值得意义,正确化简二次根式是解题关键.17、100°【解题分析】

由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【题目详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案为:100°.【题目点拨】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.18、3【解题分析】

根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.【题目详解】设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.∵4>0∴当t=3s时,S取得最小值.【题目点拨】考点:二次函数的应用.三、解答题(共66分)19、(1)200;(2)补全条形统计图见解析;乒乓球在扇形中所占的圆心角的度数为108°;(3)爱好足球和排球的学生共计228人.【解题分析】

(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(3)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.【题目详解】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人)故答案为:200;(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(3)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【题目点拨】本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)16,C(0.5,0);(2);(3)4千米.【解题分析】

(1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;(2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;(3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.【题目详解】(1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,点C的横坐标为:1-8÷16=0.5,∴点C的坐标为(0.5,0),故答案为千米/小时;(0.5,0);(2)设线段对应的函数表达式为,∵,,∴,解得:,∴线段对应的函数表达式为;(3)当时,,∴24-20=4,答:当小帅到达乙地时,小泽距乙地还有4千米.【题目点拨】本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.21、(1)解集为,整数解是-1,0;(2)【解题分析】

(1)先解不等式,再求整数解;(2)运用加减法即可.【题目详解】解:(1)解不等式①,得解不等式②,得所以所以整数解是-1,0;(2)①ⅹ2-②ⅹ3,得-5解得x=9把x=9代入②,得解得y=2所以,方程组的解是【题目点拨】考核知识点:解不等式组,解二元一次方程组.运用加减法解方程组是关键;解不等式是重点.22、(1)见详解;(2)见详解;(3)【解题分析】

(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.

(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.

(3)由(1)(2)可知,∠AMN等于它所在的正多边形的一个内角即等于时,结论AM=MN仍然成立.【题目详解】(1)证明:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°−∠AMN−∠AMB=180°−∠B−∠AMB=∠MAB=∠MAE,BE=AB−AE=BC−MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)结论AM=MN还成立证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°−∠AMN−∠AMB=180°−∠B−∠AMB=∠MAE,BE=AB−AE=BC−MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.23、(1),;(2)【解题分析】

(1)将代入求得m,确定一个解析式;由P点在x轴上,即纵坐标为0,确定P的坐标,再结合顶点式,即可确定第二个解析式;(2)由(1)得到得解析式,然后列出不等式,解不等式即可.【题目详解】(1)把代入,∴,∴,∴,∴令,,∴,∴,∵抛物线的顶点为,∴设抛物线.代入得,∴,即.(2)由题意得:x+1<解得:.【题目点拨】本题主要考查了待定系数法确定解析式和解不等式,其中解不等式是解答本题的关键.24、(1)△BEC为直角三角形,理由见解析;(2)四边形EFPH是矩形,理由见解析;(3)【解题分析】

(1)根据矩形的性质可得∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5,然后利用勾股定理即可求出BE和CE,然后根据勾股定理的逆定理即可证出△BEC为直角三角形;(2)根据矩形的性质可得AD∥BC,AD=BC=5,然后根据平行四边形的判定定理可得四边形EBPD和四边形APCE均为平行四边形,从而证出四边形EFPH是平行四边形,然后根据矩形的定义即可得出结论;(3)先利用三角形面积的两种求法,即可求出BH,从而求出HE,然后根据勾股定理即可求出HP,然后根据矩形的面积公式计算即可.【题目详解】解:(1)△BEC为直角三角形,理由如下∵四边形ABCD为矩形∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5∵DE=1∴AE=AD-DE=4在Rt△ABE中,BE=在Rt△CDE中CE=∴BE2+CE2=25=BC2∴△BEC为直角三角形(2)四边形EFPH是矩形,理由如下∵四边形ABCD为矩形∴AD∥BC,AD=BC=5∵DE=BP=1,∴AD-DE=BC-BP=4即AE=CP=4∴四边形EBPD和四边形APCE均为平行四边形∴EB∥DP,AP∥EC∴四边形EFPH是平行四边形∵△BEC为直角三角形,∠BEC=90°∴四边形EFPH是矩形(3)∵四边形APCE为平行四边形,四边形EFPH是矩形∴AP=CE=,∠EHP=90°∴∠BHP=180°-∠EHP=90°∵S△ABP=∴解得:∴HE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论