吉林省长春德惠市2024届数学八下期末监测模拟试题含解析_第1页
吉林省长春德惠市2024届数学八下期末监测模拟试题含解析_第2页
吉林省长春德惠市2024届数学八下期末监测模拟试题含解析_第3页
吉林省长春德惠市2024届数学八下期末监测模拟试题含解析_第4页
吉林省长春德惠市2024届数学八下期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春德惠市2024届数学八下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.菱形对角线不具有的性质是()A.对角线互相垂直 B.对角线所在直线是对称轴C.对角线相等 D.对角线互相平分2.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4C.5 D.63.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A.1.5cm B.2cm C.2.5cm D.3cm4.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的()A.1倍 B.2倍C.3倍 D.4倍5.如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.86.计算=()A. B. C. D.7.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分8.已知关于x的函数y=k(x-1)和y=(k≠0),它们在同一坐标系内的图象大致是()A. B. C. D.9.如果解关于x的方程x-6x-5+1=mx-5(m为常数)时产生增根,那么A.﹣1 B.1 C.2 D.﹣210.如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是()A.图1中BC的长是4厘米B.图2中的a是12C.图1中的图形面积是60平方厘米D.图2中的b是19二、填空题(每小题3分,共24分)11.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是___________度.(温馨提示:等腰梯形是一组对边平行,且同一底边上两底角相等的四边形)12.计算:________.13.▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.14.已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____15.若2x﹣5没有平方根,则x的取值范围为_____.16.若n边形的内角和是它的外角和的2倍,则n=.17.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.18.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.三、解答题(共66分)19.(10分)解不等式组:.20.(6分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;(3)求四边形EFPH的面积.21.(6分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?22.(8分).23.(8分)如图,,是上的一点,且,.求证:≌24.(8分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?25.(10分)如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.26.(10分)计算(1)(2)(3)解下列方程组(4)解下列方程组

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】菱形的对角线互相垂直平分,菱形是轴对称图形,每一条对角线所在的直线就是菱形的一条对称轴,故选C.2、D【解题分析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.3、B【解题分析】

设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【题目详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【题目点拨】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.4、D【解题分析】

复印前后的多边形按照比例放大与缩小,因此它们是相似多边形,本题按照相似多边形的性质求解.【题目详解】由题意可知,相似多边形的边长之比=相似比=1:2,所以面积之比=(1:2)2=1:4.故选D.【题目点拨】此题考查相似多边形的性质,解题关键在于掌握其性质.5、A【解题分析】试题分析:根据菱形的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可知每个直角三角形的直角边,根据勾股定理可将菱形的边长求出.解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===1所以菱形的边长为1.故选A.考点:菱形的性质.6、A【解题分析】

直接利用二次根式的性质化简得出答案.【题目详解】解:原式==.故选:A.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.7、C【解题分析】

根据矩形的性质即可判断.【题目详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【题目点拨】本题考查矩形的性质,解题的关键是记住矩形的性质.8、A【解题分析】若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.9、A【解题分析】

分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【题目详解】方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.故选A.【题目点拨】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10、C【解题分析】试题分析:根据图示可得BC=4×2=8厘米;图2中a=6×8÷2=24;图1中的面积为60平方厘米;图2中的b是17.考点:函数图象的性质.二、填空题(每小题3分,共24分)11、1【解题分析】

仔细观察可发现等腰梯形的三个钝角的和是360°,从而可求得其钝角的度数.【题目详解】解:根据条件可以知道等腰梯形的三个钝角的和是360°,因而这个图案中等腰梯形的底角是360°÷3=1°,故答案为:1.【题目点拨】本题考查了平面镶嵌(密铺)和等腰梯形的性质,正确观察图形,得到梯形角的关系是解题的关键.12、2【解题分析】

分别先计算绝对值,算术平方根,零次幂后计算得结果.【题目详解】解:原式.故答案为:.【题目点拨】本题考查的是绝对值,算术平方根,零次幂的运算,掌握运算法则是解题关键.13、1.【解题分析】

首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.【题目详解】∵AE⊥BD,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=4cm,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,BC=AD=4cm,∵AC+BD=14cm,∴BO+CO=7cm,∴△OBC的周长为:7+4=1(cm),故答案为1【题目点拨】本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm14、-2【解题分析】

由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【题目详解】由已知得:,解得:-<k<2.∵k为整数,∴k=-2.故答案为:-2.【题目点拨】本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.15、x<.【解题分析】

由负数没有平方根得出关于x的不等式,解之可得.【题目详解】由题意知2x﹣5<0,解得x<,故答案为:x<.【题目点拨】此题考查平方根的性质,正数有两个平方根它们互为相反数,零的平方根是它本身,负数没有平方根.16、6【解题分析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617、【解题分析】

本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【题目详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.【题目点拨】本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.18、1【解题分析】

根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【题目详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【题目点拨】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.三、解答题(共66分)19、﹣3<x≤1.【解题分析】

先分别求出各不等式的解集,再求其公共解集即可.【题目详解】解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集为:﹣3<x≤1.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集,并将找到其公共部分是关键.20、(1)△BEC为直角三角形,理由见解析;(2)四边形EFPH是矩形,理由见解析;(3)【解题分析】

(1)根据矩形的性质可得∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5,然后利用勾股定理即可求出BE和CE,然后根据勾股定理的逆定理即可证出△BEC为直角三角形;(2)根据矩形的性质可得AD∥BC,AD=BC=5,然后根据平行四边形的判定定理可得四边形EBPD和四边形APCE均为平行四边形,从而证出四边形EFPH是平行四边形,然后根据矩形的定义即可得出结论;(3)先利用三角形面积的两种求法,即可求出BH,从而求出HE,然后根据勾股定理即可求出HP,然后根据矩形的面积公式计算即可.【题目详解】解:(1)△BEC为直角三角形,理由如下∵四边形ABCD为矩形∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5∵DE=1∴AE=AD-DE=4在Rt△ABE中,BE=在Rt△CDE中CE=∴BE2+CE2=25=BC2∴△BEC为直角三角形(2)四边形EFPH是矩形,理由如下∵四边形ABCD为矩形∴AD∥BC,AD=BC=5∵DE=BP=1,∴AD-DE=BC-BP=4即AE=CP=4∴四边形EBPD和四边形APCE均为平行四边形∴EB∥DP,AP∥EC∴四边形EFPH是平行四边形∵△BEC为直角三角形,∠BEC=90°∴四边形EFPH是矩形(3)∵四边形APCE为平行四边形,四边形EFPH是矩形∴AP=CE=,∠EHP=90°∴∠BHP=180°-∠EHP=90°∵S△ABP=∴解得:∴HE=BE-BH=在Rt△BHP中,HP=∴S矩形EFPH=HP·HE=【题目点拨】此题考查的是矩形的判定及性质、勾股定理和勾股定理的逆定理,掌握矩形的定义、矩形的性质、利用勾股定理解直角三角形和利用勾股定理的逆定理判定直角三角形是解决此题的关键.21、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.【解题分析】

(1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;(2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.【题目详解】(1)①令,则,解得,∴;令,则,∴;②当t=2时,,图形如下:(2)如图,∵四边形DCEF与四边形ABEF关于直线EF对称,,.,.,,,,即轴,,∴四边形DHEF为平行四边形.要使四边形DHEF为菱形,只需,,,.又,,,解得,∴当时,四边形DHEF为菱形;(3)连接AD,BC,∵AB和CD关于EF对称,∴,∴四边形ABCD为平行四边形.由(2)知,.,,∴四边形ABCD为矩形.∵,.,,∴四边形ABCD的面积为,解得,∴当时,四边形ABCD的面积为1.【题目点拨】本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.22、【解题分析】

先分别根据平方差公式和完全平方公式进行计算,再合并即可.【题目详解】原式=25-10-2+4-3=10+4【题目点拨】此题考查平方差公式和完全平方公式,掌握运算法则是解题关键23、证明见解析.【解题分析】

此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.【题目详解】证明:∵∠1=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论