




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届郑州市外国语中学数学八年级第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1252.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于()A.60° B.65° C.75° D.80°3.如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为()A.1 B.2 C.3 D.44.如图,在中,于点D,且是的中点,若则的长等于()A.5 B.6 C.7 D.85.在中,若斜边,则边上的中线的长为()A.1 B.2 C. D.6.已知,则式子的值是()A.48 B. C.16 D.127.把根号外的因式移入根号内,结果()A. B. C. D.8.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣39.如图,在▱ABCD中,AC⊥BD于点O,点E为BC中点,连接OE,OE=,则▱ABCD的周长为()A.4 B.6 C.8 D.1210.直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+211.如图,中,是斜边上的高,,那么等于()A. B. C. D.12.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直二、填空题(每题4分,共24分)13.若代数式的值等于0,则x=_____.14.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.15.如图,将直角三角形纸片置于平面直角坐标系中,已知点,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图位置,第二次旋转至图位置,···,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为__________.16.如图,已知函数y=kx+2与函数y=mx-4的图象交于点A,根据图象可知不等式kx+2<mx-4的解集是__________.17.如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.18.为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时的众数是_____.三、解答题(共78分)19.(8分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.(1)求该厂今年产量的月平均増长率为多少?(2)预计月份的产量为多少万台?20.(8分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?21.(8分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;(2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?(3)拓展探究:①解方程:+++=;②化简:++…+.22.(10分)先化简再求值:,其中m是方程的解.23.(10分)如图,直线y=-2x+6与x轴交于点A,与直线y=x交于点B.(1)点A坐标为_____________.(2)动点M从原点O出发,以每秒1个单位长度的速度沿着O→A的路线向终点A匀速运动,过点M作MP⊥x轴交直线y=x于点P,然后以MP为直角边向右作等腰直角△MPN.设运动t秒时,ΔMPN与ΔOAB重叠部分的面积为S.求S与t之间的函数关系式,并直接写出t的取值范围.24.(10分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;25.(12分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形(1)如图,当四边形为正方形时,求,的值;(2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.26.如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【题目详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【题目点拨】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.2、C【解题分析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【题目详解】连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选:C.【题目点拨】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.3、B【解题分析】
只要证明CD=CE=4,根据BE=BC-EC计算即可.【题目详解】∵四边形ABCD是平行四边形,∴AB=CD=4,AD=BC=6,∵AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠DEC=∠CDE,∴DC=CE=AB=4,∴BE=BC-CE=6-4=2,故选B.【题目点拨】本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.4、D【解题分析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD==8.故选D【题目点拨】此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值5、D【解题分析】
再根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.【题目详解】∵BD是斜边AC边上的中线,∴BD=AC=×=.故选D.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.6、D【解题分析】
先通分算加法,再算乘法,最后代入求出即可.【题目详解】解:===(x+y)(x-y),当时,原式=4×=12,故选:D.【题目点拨】本题考查分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.7、B【解题分析】
根据可得,所以移入括号内为进行计算即可.【题目详解】根据根式的性质可得,所以因此故选B.【题目点拨】本题主要考查根式的性质,关键在于求a的取值范围.8、B【解题分析】
解:由题意得,1-x>0,解得x<1.故选:B.【题目点拨】本题考查函数自变量取值范围.9、C【解题分析】
在▱ABCD中,AC⊥BD于点O,∴▱ABCD为菱形,则其四边相等,Rt△BOC中,点E为斜边BC中点,∴OE=BE=EC=,从而可求▱ABCD的周长【题目详解】解:∵AC⊥BD,∴▱ABCD为菱形,则其四边相等且点E为斜边BC中点,∴OE=BE=EC=,∴BC=2,∴▱ABCD的周长=4BC=8故选:C.【题目点拨】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.10、C【解题分析】
据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.【题目详解】直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.故选:C.【题目点拨】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.11、C【解题分析】
根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.【题目详解】解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD是高,
∴∠ADC=∠CDB=90°,
∴∠ACD+∠CAD=90°,
∴∠DCB=∠CAD,
∴△ADC∽△CDB,∴CD2=AD•BD,
∵AD=9,BD=4,∴CD=6故选:C.【题目点拨】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.12、B【解题分析】
根据正方形和菱形的性质逐项分析可得解.【题目详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【题目点拨】考点:1.菱形的性质;2.正方形的性质.二、填空题(每题4分,共24分)13、2【解题分析】
由分式的值为零的条件得x2-5x+6=0,2x-6≠0,由x2-5x+6=0,得x=2或x=3,由2x-6≠0,得x≠3,∴x=2.14、x<【解题分析】
根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.【题目详解】依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.解得.故直线l1:y1=x+1.同理,直线l2:y2=x-1.由k1x+b1>k2x+b2得到:x+1>x-1.解得x<.故答案是:x<.【题目点拨】此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.15、【解题分析】
根据题意,由2019÷3=673可得,直角三角形纸片旋转2019次后图形应与图③相同,利用勾股定理与规律即可求得答案.【题目详解】解:由题意可知AO=3,BO=4,则AB=,∵2019÷3=673,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为:673×(3+4+5)=8076.故答案为8076.【题目点拨】本题主要考查勾股定理,图形规律题,解此题的关键在于根据题意准确找到图形的变化规律,利用勾股定理求得边长进行解答即可.16、x<-2【解题分析】
观察函数图象得到当x<-2时,y=kx+2的图象位于y=mx-1的下方,即kx+2<mx-1.【题目详解】解:∵观察图象知当<>-2时,y=kx+2的图象位于y=mx-1的下方,
根据图象可知不等式kx+2<mx-1的解集是x<-2,
故答案为:x<-2.【题目点拨】本题考查一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、1【解题分析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.【题目详解】解:设A(1,m).把A(1,m)代入y=6﹣x得:m=﹣1+6=4,把A(1,4)代入y=kx得4=1k,解得k=1.故答案是:1.【题目点拨】本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.18、1.【解题分析】
众数是一组数据中出现次数最多的数据,根据众数的定义就可以求出.【题目详解】在这一组数据中1出现了8次,出现次数最多,因此这组数据的众数为1.故答案为1.【题目点拨】本题属于基础题,考查了确定一组数据的众数的能力.要明确定义.三、解答题(共78分)19、(1)20%;(2)8.64万台.【解题分析】试题分析:(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.试题解析:(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2﹣5(1+x)=1.2解得:x=﹣1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.20、(1)乙平均数为8,方差为0.8;(2)乙.【解题分析】
(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【题目详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【题目点拨】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.21、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②【解题分析】
(1)归纳总结得到一般性规律,写出即可;(2)根据题意列出关系式,利用得出的规律化简即可;(3)①方程变形后,利用得出的规律化简,计算即可求出解;②原式利用得出的规律变形,计算即可求出值.【题目详解】(1)根据题意得:=-;(2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,∵<1,∴按这种倒水方式,这1L水倒不完;(3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,[(1-)]•=,•=,解得:x=,经检验,x=是原方程的解,∴原方程的解为x=;②++…+==(-)+(-)+(-)+…+[-]=[-]=.【题目点拨】本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.22、;.【解题分析】
先将括号内通分计算分式的减法,再讲除式分子因式分解、除法转化为乘法,约分即可化简,由方程得解得概念可得,即可知原式的值.【题目详解】===,∵m是方程的解,∴,∴原式=【题目点拨】此题考查分式的化简求值,解题关键在于掌握分式的运算法则.223、(1)(3,0);(2)【解题分析】
(1)将y=0代入y=-2x+6可得x=3,即可得出点A坐标;(2)分点N在直线AB左侧时,点N在直线AB右侧且P在直线AB左侧时,以及点P在直线AB右侧三种情况讨论,利用数形结合的思想,根据重叠部分的形状,分别用含t的式子表示出三角形的底边和高,从而得到重叠部分的面积.【题目详解】(1)将y=0代入y=-2x+6可得x=3,所以点A坐标为(3,0)故答案为:(3,0)(2)如图一,由得∴B(2,2)过点B作BH⊥x轴于点H∴BH=OH=2,∠AOB=45°∵PM⊥x轴∴OM=MP=t∵等腰直角ΔMPN∴PN∥x轴∴∠N=∠NMA=45°∴∠AOB=∠NMA=45°∴MN∥OB∴设直线MN为y=x+b∵OM=t∴y=x-t当点N在直线y=-2x+6上时,OM=PM=PN=t,∴N(2t,t)∴t=-2×2t+6,解得:t=∴当时,如图二,当点P在直线y=-2x+6上时,OM=PM=t,可得t=-2t+6,解得:t=2当时,PN与AB交于点E,MN与AB交于点F,∵P(t,t)∴t=-2x+6∴∴∴∴∵OA=3∴MA=3-t由得F(2+t,2-t)过点F作△ENF的高GF,△FMA的高HF∴HF=2-t∴∴∴;如图三,当M与A重合时,t=3故当时,PM与AB交于点E,MN与AB交于点F,有E(t,-2t+6),F(2+t,2-t),∴,∴;综上所述,.【题目点拨】本题考查了一次函数的应用和动点问题,综合性较强,利用数形结合的思想,找到突破口,联立函数解析式求出关键点的坐标,从而得出图形的面积.24、证明见解析.【解题分析】
根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.【题目详解】证明:,,,四边形ABCD是平行四边形,,在和中,,≌.【题目点拨】本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.25、见详解.【解题分析】
(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
(2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【题目详解】解:(1)如图1,过点D作DE⊥y轴于E,
∴∠AED=∠AOB=90°,
∴∠ADE+∠DAE=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAE+∠BAO=90°,
∴∠ADE=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具修复师知识培训课件
- 2025年教育创新:三角形三边关系的课件开发
- 服务员实习工作总结范文
- DB31∕T 586-2012 甜菜夜蛾测报技术规范
- 海印布艺-家居总汇开业活动策划方案【高端策划】
- 公文写作培训课程
- 物流系统分析 课件 项目九-任务三(二)集装箱空箱调度优化模型
- 金融服务客户满意度表
- 项目进展跟踪与总结报告
- 承包经营幼儿园协议书
- 苏教版一年级科学下册全册课件
- 26个英文字母大小写描红
- 砼弹性模量检测原始记录
- 影视文学教程整本书课件完整版电子教案全套课件最全教学教程ppt(最新)
- 室内设计制图与识图课件汇总全书电子教案完整版课件最全幻灯片(最新)
- 江苏版三年级数学下册-长方形和正方形的面积计算 PPT
- 《建筑冷热源》课程教学大纲-
- 12534 安全风险控制与安全工具应用
- 2016年七里塘电站1号机组C级检修方案
- 公司股权激励方案(绝对干货)PPT幻灯片课件(46页PPT)
- T∕CGMA 033002-2020 压缩空气站节能设计指南
评论
0/150
提交评论