2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省平凉市名校数学八年级第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣72.下列二次根式中,属于最简二次根式的是()A. B. C. D.3.一次函数的图像如图,那么下列说法正确的是().A.时, B.时, C.时, D.时,4.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x≠1 D.x>15.下列各比值中,是直角三角形的三边之比的是()A.1:2:3 B.2:3:4 C.3:4:6 D.1:3:26.如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.7.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是68.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5 B.6,8,10 C.5,12,13 D.4,5,69.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形.你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④ B.①②③ C.①④ D.④10.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题(每小题3分,共24分)11.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)12.如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.13.若关于x的分式方程有增根,则m的值为_______.14.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).15.斜边长17cm,一条直角边长15cm的直角三角形的面积.16.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024816201845摸到白球的频率0.650.620.5930.6040.6010.6200.615请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)17.如图中的数字都是按一定规律排列的,其中x的值是________.18.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.三、解答题(共66分)19.(10分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):平均数中位数众数A店8.5B店810(1)根据图a数据填充表格b所缺的数据;(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.20.(6分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)从图中看,小明与小亮哪次的成绩最好?(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?21.(6分)某市篮球队在市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,如图记录的是这两名同学5次投篮中所投中的个数.姓名平均数(个)众数(个)方差王亮7李刚72.8(1)请你根据图中的数据,填写上表.(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.22.(8分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标。23.(8分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.24.(8分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.25.(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.26.(10分)“知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节项目的比赛,每人进行了4次测试,对照一定的标准,得分如下:甲:80,1,100,50;乙:75,80,75,1.如果你是教练,你打算安排谁代表学校参赛?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【题目详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.【题目点拨】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.2、C【解题分析】

根据最简二次根式的定义对各选项分析判断利用排除法求解.【题目详解】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、D【解题分析】

根据函数图象可以直接得到答案.【题目详解】A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选D.【题目点拨】考查了一次函数图象和一次函数的性质,解答此题,需要学生具备一定的读图能力,难度中等.4、C【解题分析】

分式的分母不为零,即x-1≠1.【题目详解】解:当分母x-1≠1,即x≠1时,分式有意义;

故选:C.【题目点拨】从以下三个方面透彻理解分式的概念:

(1)分式无意义⇔分母为零;

(2)分式有意义⇔分母不为零;

(3)分式值为零⇔分子为零且分母不为零.5、D【解题分析】

根据勾股定理的逆定理对各个条件进行分析,从而得到答案.【题目详解】解:A、12+22≠32,故不是直角三角形的三边之比;B、22+32≠42,故不是直角三角形的三边之比;C、32+42≠62,故不是直角三角形的三边之比;D、12+(3)2=22,故是直角三角形的三边之比.故选D.【题目点拨】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、B【解题分析】

分别表示出空白矩形的长和宽,列式计算即可.【题目详解】解:空白矩形的长为,宽为,∴面积=故选:B.【题目点拨】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.7、D【解题分析】

根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【题目详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【题目点拨】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8、D【解题分析】

根据勾股定理即可判断.【题目详解】A.∵32+42=52,故为直角三角形;B.62+82=102,故为直角三角形;C.52+122=132,故为直角三角形;D.42+52≠62,故不是直角三角形;故选D.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.9、C【解题分析】

由平行四边形的判定可求解.【题目详解】解:当添加①④时,可得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∵BE=DF∴AD﹣DF=BC﹣BE∴AF=EC,且AF∥CE∴四边形AECF是平行四边形.故选C.【题目点拨】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.10、B【解题分析】

可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【题目详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.二、填空题(每小题3分,共24分)11、甲.【解题分析】试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.考点:方差.12、84°.【解题分析】

据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【题目详解】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案为84°.【题目点拨】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.13、1【解题分析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.【题目详解】解:方程两边都乘,得∵原方程有增根,∴最简公分母,解得,当时,故m的值是1,故答案为1【题目点拨】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、(30﹣10)【解题分析】

AB的黄金分割点有两个,一种情况是AC<BC,一种是AC>BC,当AC<BC时走的路程最小,由此根据黄金分割的意义进行求解即可.【题目详解】如图所示:则,即(20−AC):20=(−1):2,解得AC=30−10.∴他应至少再走30−10米才最理想,故答案为:30−10.【题目点拨】本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.15、60cm2【解题分析】试题分析:先根据勾股定理求得另一条直角边的长,再根据直角三角形的面积公式即可求得结果.由题意得,另一条直角边的长则直角三角形的面积考点:本题考查的是勾股定理,直角三角形的面积公式点评:本题属于基础应用题,只需学生熟练掌握勾股定理和直角三角形的面积公式,即可完成.16、0.60【解题分析】

计算出平均值即可解答【题目详解】解:由表可知,当n很大时,摸到白球的频率将会接近0.60;故答案为:0.60;【题目点拨】此题考查利用频率估计概率,解题关键在于求出平均值17、1【解题分析】

根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.【题目详解】解:由题意知,m+1=n且m+n=19,∴m=9,n=10,∴x=19×10-9=1,故答案为:1.【题目点拨】本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.18、30°【解题分析】

解:∵四边形ABCD是矩形,

∴∠B=90°,

∵E为边AB的中点,

∴AE=BE,

由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,

∴AE=FE,

∴∠EFA=∠EAF=75°,

∴∠BEF=∠EAF+∠EFA=150°,

∴∠CEB=∠FEC=75°,

∴∠FCE=∠BCE=90°-75°=15°,

∴∠BCF=30°,

故答案为30°.【题目点拨】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.三、解答题(共66分)19、(1)见解析;(2)月销售额定为8.5万合适,见解析.【解题分析】

(1)众数就是出现次数最多的数,据此即可求解;中位数就是大小处于中间位置的数,根据定义即可求解;(2)利用中位数的意义进行回答.【题目详解】(1)A店的中位数为8.5,众数为8.5;B店的平均数为:.故答案为:8.5;8.5;8.5;(2)如果A店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万合适.因为中位数为8.5,所以月销售额定为8.5万,有一半左右的营业员能达到销售目标.【题目点拨】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1)见解析;(2)小明第4次成绩最好,小亮第3次成绩最好;(3)小明平均数:13.3,方差为:0.004;小亮平均数为:13.3,方差为:0.02;建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.【解题分析】

(1)、(2),根据图形,分别找出小明第4次成绩和小亮第2次的成绩,进而补全表格,再结合统计图找出小明和小亮的最好成绩即可;(3)根据平均数和方差的计算公式分别求出小明和小亮的平均成绩和方差即可.【题目详解】(1)根据统计图补齐表格,如下:(2)由图可得,小明第4次成绩最好,小亮第3次成绩最好.(3)小明的平均成绩为:(13.3+13.4+13.3+13.2+13.3)=13.3(秒),方差为:×[(13.3-13.3)+(13.4-13.3)+(13.3-13.3)+(13.2-13.3)+(13.3-13.3)]=0.004;小亮的平均成绩为:(13.2+13.4+13.1+13.5+13.3)÷5=13.3(秒),方差为×[(13.2-13.3)+(13.4-13.3)+(13.1-13.3)+(13.5-13.3)+(13.3-13.3)]=0.02.从平均数看,两人的平均水平相等;从方差看,小明的成绩较稳定,小亮的成绩波动较大.建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.【题目点拨】此题考查折线统计图,方差,算术平均数,解题关键在于掌握运算法则,看懂图中数据21、(1)从左到右依次填7,7,0.4;(2)王亮的成绩比较稳定;(3)选王亮,理由见解析.【解题分析】

(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为李亮每次投篮平均数;根据众数定义,王刚投篮出现次数最多的成绩即为其众数;先算出王亮的成绩的平均数,再根据方差公式计算王亮的投篮次数的方差.

(2)比较他们两人的方差的大小,方差越小越稳定;(3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要【题目详解】解:(1)李刚投篮的平均数为:(4+7+7+8+9)÷5=7个,王亮5次投篮,有3次投中7个,故7为众数;王亮的方差为:S2=[(6-7)2+(7-7)2+(8-7)2+(7-7)2+(7-7)2]=0.4个(2)王亮的成绩比较稳定.两人投中个数的平均数相同;从方差上看,王亮投中个数的方差小于李刚投中个数的方差,所以王亮的成绩比较稳定.(3)选王亮,理由是成绩稳定或者选李刚,理由是他具有发展潜力,李刚越到后面投中个数越多.【题目点拨】此题是方差题,考查了实际问题,将数学知识与实际生活相联系,有利于培养学生学数学,用数学的意识,同时体现了数学来源于生活,应用于生活的本质.22、(1)见解析;(2)(−3,−2);【解题分析】

(1)利用点A的坐标画出直角坐标系;(2)根据点的坐标的意义描出点B;【题目详解】(1)建立直角坐标系如图所示:(2)图书馆(B)位置的坐标为(−3,−2);故答案为:(−3,−2);【题目点拨】此题考查坐标确定位置,解题关键在于根据题意画出坐标系.23、(1);(2)甲车从地到达地的行驶时间是2.5小时;(3)甲车返回时与之间的函数关系式是;(4)乙车到达地时甲车距地的路程是175千米.【解题分析】

(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【题目详解】解:(1)甲车

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论