2024届山东省青岛十五中学数学八下期末联考模拟试题含解析_第1页
2024届山东省青岛十五中学数学八下期末联考模拟试题含解析_第2页
2024届山东省青岛十五中学数学八下期末联考模拟试题含解析_第3页
2024届山东省青岛十五中学数学八下期末联考模拟试题含解析_第4页
2024届山东省青岛十五中学数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛十五中学数学八下期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为(

)A.8

B.9

C.485

D.102.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为().A.75° B.40° C.30° D.15°3.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形4.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.1,2,35.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<06.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0) B.(0,4) C.(0,5) D.(0,)7.使代数式有意义的x的取值范围是()A. B. C. D.8.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ9.一个多边形的内角和是1800°,则这个多边形是()边形.A.9 B.10 C.11 D.1210.一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是()A.6和6 B.8和6 C.6和8 D.8和1611.函数y=中自变量x的取值范围为()A.x≥0 B.x≥-1 C.x>-1 D.x≥112.如图,□ABCD中,∠C=100°,BE平分∠ABC,则∠AEB的度数为()A.60° B.50° C.40° D.30°二、填空题(每题4分,共24分)13.如图,直线(>0)与轴交于点(-1,0),关于的不等式>0的解集是_____________.14.不等式组的解集是_________.15.已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.16.在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.17.如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.18.与最简二次根式3是同类二次根式,则a=_____.三、解答题(共78分)19.(8分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.20.(8分)操作与证明:如图,把一个含角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AC、AE、其中AC与EF交于点N,取AF中点M,连接MD、MN.求证:是等腰三角形;在的条件下,请判断MD,MN的数量关系和位置关系,并给出证明.21.(8分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作,由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间:(1)求甲乙两名工人每天各制作多少个宣传牌?(2)现在需要这两名工人合作完成44个宣传牌制作在务,应如何分配,才能让两名工人同时完成任务?22.(10分)如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?23.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.(10分)某商家在国庆节前购进一批A型保暖裤,十月份将此保暖裤的进价提高40%作为销售价,共获利1000元.十一月份,商家搞“双十一”促销活动,将此保暖裤的进价提高30%作为促销价,销量比十月份增加了30件,并且比十月份多获利200元.此保暖裤的进价是多少元?(请列分式方程进行解答)25.(12分)5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形.按照此种做法解决下列问题:(1)5个同样大小的矩形纸片摆放成图2形式,请将其分割并拼接成一个平行四边形.要求:在图2中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图3,在面积为1的平行四边形中,点分别是边的中点,分别连结得到一个新的平四边形.则平行四边形的面积为___________(在图3中画图说明).26.计算与化简:计算:化简:已知,求:的值

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

在Rt△DEC中,由勾股定理可得DE的长.设AD=x,则BE=x-1,AB=DC=C'D.由Rt△AC'D≌△EBA,得到BE=AC'=x-1.在Rt△AC'D中,由勾股定理即可得出结论.【题目详解】解:如图,由勾股定理得:DE=DC设AD=x,则BE=x-1,AB=DC=C'D.∵AD∥BE,∴∠DAE=∠AEB,∴Rt△AC'D≌△EBA(AAS),∴BE=AC'=x-1.在Rt△AC'D中,由勾股定理得:AD1=AC'1+C'D1,即x1=(x-1)1+61,解得:x=2,即AD=2.故选D.【题目点拨】本题考查了矩形与折叠.证明Rt△AC'D≌△EBA是解答本题的关键.2、C【解题分析】

根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.【题目详解】∵CD=CE,∴∠D=∠DEC,∵∠D=75°,∴∠C=180°-75°×2=30°,∵AB∥CD,∴∠B=∠C=30°.故选C.【题目点拨】此题考查的知识点是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C的度数.3、C【解题分析】

一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【题目详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【题目点拨】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.4、C【解题分析】

利用勾股定理的逆定理以及三角形的三边关系,逐一验证四个选项中三条边的长度能否构成直角三角形.【题目详解】A、22+32=13,42=16,13≠16,∴2、3、4不能构成直角三角形;B、32+42=25,62=36,25≠36,∴3、4、6不能构成直角三角形;C、∵52+122=169,132=169,169=169,∴5、12、13能构成直角三角形;D、∵1+2=3,∴1、2、3不能构成三角形.故选C.【题目点拨】本题考查了勾股定理的逆定理以及三角形的三边关系,逐一验证四个选项中三条边的长度能否构成直角三角形是解题的关键.5、B【解题分析】试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.6、B【解题分析】分析:根据勾股定理解答本题即可.详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,

所以OB==4,

所以点B的坐标为(0,4),

故选B.点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.7、A【解题分析】

根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.【题目详解】使代数式有意义,则x-10≥0,解得:x≥10,故选A.【题目点拨】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.8、D【解题分析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【题目详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【题目点拨】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.9、D【解题分析】

根据n边形的内角和是(n﹣2)×180,根据多边形的内角和为1800,就得到一个关于n的方程,从而求出边数.【题目详解】根据题意得:(n﹣2)×180=1800,解得:n=1.故选:D.【题目点拨】此题主要考查多边形的内角和,解题的关键是熟知n边形的内角和是(n﹣2)×180.10、A【解题分析】

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.【题目详解】在这一组数据中6是出现次数最多的,故众数是6;这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;故选A.【题目点拨】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11、B【解题分析】根据题意得:x+1≥0,解得:x≥-1.故选:B.12、C【解题分析】

由平行四边形的性质得出AD∥BC,AB∥CD,由平行线的性质得出∠AEB=∠CBE,∠ABC=80°,由角平分线定义求出∠CBE=40°,即可得出答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠ABC+∠C=180°,∴∠ABC=180°-∠C=180°-100°=80°,∵BE平分∠ABC,∴∠CBE=∠ABC=40°,∴∠AEB=40°;故选:C.【题目点拨】本题考查了平行四边形的性质、平行线的性质等知识;熟练掌握平行四边形的性质是解题的关键.二、填空题(每题4分,共24分)13、x>-1【解题分析】

先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.【题目详解】∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方,∴ax+b>0的解集是x>-1.故答案为:x>-1.【题目点拨】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.14、x>1【解题分析】

求出每个不等式的解集,根据找不等式组解集的规律找出即可.【题目详解】∵解不等式x-1≥0得:x≥1,

解不等式4-1x<0得:x>1,

∴不等式组的解集为x>1,

故答案是:x>1.【题目点拨】考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.15、4.1【解题分析】

分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.【题目详解】若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;若众数为1,则数据为1、1、1、7,中位数为1,符合题意,此时平均数为=4.1;若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;故答案为:4.1.【题目点拨】本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.16、3或1.【解题分析】

由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【题目详解】解:∵AC=BC=10,

∴∠CAB=∠CBA,

由旋转的性质知,△ACB≌△AED,

∴AE=AC=10,∠CAB=∠EAD=∠CBA,

①∵∠DAF=∠CBA,

∴∠DAF=∠EAD,

∴A,F,E三点在同一直线上,如图1所示,

过点C作CH⊥AB于H,

则AH=BH=AB=7,

∵EP⊥AC,

∴∠EPA=∠CHA=90°,

又∵∠CAH=∠EAP,CA=EA,

∴△CAH≌△EAP(AAS),

∴AP=AH=7,

∴PC=AC-AP=10-7=3;

②当D,A,C在同一条直线上时,如图2,

∠DAF=∠CAB=∠CBA,

此时AP=AD=AB=7,

∴PC=AC+AP=10+7=1.

故答案为:3或1.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.17、【解题分析】

连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.【题目详解】解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,∴△MED和△DEF均为等腰直角三角形.∵DE=DF,∠EDH=∠FDH=45°,∴DH⊥EF,EH=HF,∴FH∥BC.设ME=HE=FH=x,则GH=3﹣x.由FH∥BC可知:,即,解得:,∴.在Rt△AME中,.故答案为:.【题目点拨】本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.18、3【解题分析】

先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于的方程,解出即可.【题目详解】解:∵与最简二次根式是同类二次根式∴,解得:故答案为:【题目点拨】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于的方程是解题的关键.三、解答题(共78分)19、(1)x+1;(2)-2.【解题分析】

(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.【题目详解】(1)原式==x+1;(2)解不等式“”得,∴其负整数解是-3、-2、-1.∴当时,原式=-3+1=-2【题目点拨】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.20、(1)证明见解析;(2)【解题分析】

(1)根据正方形性质得:AB=AD=BC=CD,∠ABE=∠ADF=90°,再根据等腰直角三角形得BE=DF,证明△ABE≌△ADF,得AE=AF,则△AFE是等腰三角形;(2)先根据直角三角形斜边中线等于斜边一半得:DM=AF,再由等腰三角形三线合一得:AC⊥EF,EN=FN,同理MN=AF,则DM=MN;可证∠FMD=2∠FAD,∠FMN==2∠FAC,则∠DMN=∠DMF+∠FMN=2∠FAD+2∠FAC=2∠DAC=90°.即可得到DM⊥MN.【题目详解】(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠ADF=90°,∵△EFC是等腰直角三角形,∴CE=CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∴△AFE是等腰三角形;(2)DM=MN,且DM⊥MN.理由是:在Rt△ADF中,∵M是AF的中点,∴DM=AF,∵EC=FC,AC平分∠ECF,∴AC⊥EF,EN=FN,∴∠ANF=90°,∴MN=AF,∴MD=MN.由(1)得:△ABE≌△ADF,∴∠BAE=∠FAD,∵DM=AF=AM,∴∠FAD=∠ADM,∴∠FMD=∠FAD+∠ADM=2∠FAD,同理:∠FMN==2∠FAC,∴∠DMN=∠DMF+∠FMN=2∠FAD+2∠FAC=2∠DAC=2×45°=90°.∴MD⊥MN.【题目点拨】本题考查了正方形、等腰直角三角形的性质,本题还应用了直角三角形斜边中线的性质,要熟练掌握;本题的关键是证明△ABE≌△ADF,从而得出结论.21、(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.【解题分析】

(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;

(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,根据所用时间相等列出方程解答即可.【题目详解】解:(1)设甲工人每天制作x个宣传牌,则乙工人每天制(1+20%)x=1.2x个,由题意得解得x=5经检验x=5是原方程的解且符合题意∴1.2x=6答:甲工人每天制作5个宣传牌,乙工人每天制作6个.(2)设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,

由题意得:,

解得:a=20,

44-a=24,

答:给甲分配制作20个,乙制作24个,才能让两名工人同时完成任务.故答案为:(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.【题目点拨】本题考查分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.22、这条小路的面积是140m1.【解题分析】试题分析:根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.试题解析:路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷1=1400(m1)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣1400×1=140(m1).答:这条小路的面积是140m1.【题目点拨】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论