2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题含解析_第1页
2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题含解析_第2页
2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题含解析_第3页
2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题含解析_第4页
2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省沈阳市第九十九中学数学八下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④2.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A. B. C. D.3.如图,已知▱ABCD中,点M是BC的中点,且AM=6,BD=12,AD=4,则该平行四边形的面积为()A.24 B.36 C.48 D.724.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2) B.(4,2) C.(2,4) D.(2,1)5.如图,矩形ABCD的两条对角线交于点O,若,,则AC等于()A.8 B.10 C.12 D.186.如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、8.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是A. B. C. D.9.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是()A.S,a是变量;,h是常量B.S,a,h是变量;是常量C.a,h是变量;S是常量D.S是变量;,a,h是常量10.正比例函数y=(k+2)x,若y的值随x的值的增大而减小,则k的值可能是()A.0 B.2 C.-4 D.-211.下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若x=1,则x2=112.一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是()A. B. C. D.二、填空题(每题4分,共24分)13.两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。14.如图,经过平移后得到,下列说法错误的是()A. B.C. D.15.在中,对角线,相交于点,若,,,则的周长为_________.16.对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.17.已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____18.如图,是直线上的一点,已知的面积为,则的面积为________.三、解答题(共78分)19.(8分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.20.(8分)有一工程需在规定日期x天内完成,如果甲单独工作刚好能够按期完成:如果乙单独工作就要超过规定日期3天.(1)甲的工作效率为,乙的工作效率为.(用含x的代数式表示)(2)若甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求x的值.21.(8分)如图,一次函数y=kx+b的图像与反比例函数y=mx的图像交于点A(-3,n),(1)求反比例函数与一次函数的函数表达式(2)请结合图像直接写出不等式kx+b⩾mx(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,22.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,,求的长.23.(10分)如图1,在中,,,、分别是、边上的高,、交于点,连接.(1)求证:;(2)求的度数;(3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.24.(10分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标.(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.25.(12分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示一次充电后行驶的里程数分别为,,,.(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;电动汽车一次充电后行驶里程数的条形统计图电动汽车一次充电后行驶里程数的扇形统计图(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;(3)估计这种电动汽车一次充电后行驶的平均里程多少?26.如图,在中,,平分,于.(1)求证:;(2)若,,求的面积.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.2、B【解题分析】

先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.【题目详解】解:∵,∴∠BED=∠BEC在Rt△BDE与Rt△BCE中∴Rt△BDE≌Rt△BCE(HL)∴DE=CE∴点E是CD的中点,又∵点F是AC的中点,∴EF是△ADC的中位线,∴∵,,,∴AD=AB-BC=4∴EF=2故答案为:B.【题目点拨】本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.3、C【解题分析】分析:由平行四边形的性质,可得△BOM∽△AOD,可得出OB⊥OM,进而可求解其面积.解:AM、BD相交于点O,在平行四边形ABCD中,可得△BOM∽△AOD,∵点M是BC的中点,即=,、∴==,∵AM=6,BD=12,∴OM=2,OB=4,在△BOM中,22+42=,∴OB⊥OM∴S△ABD=BD•OA=×12×4=24,∴SABCD=2S△ABD=1.故选C.【点评】本题主要考查平行四边形的性质,能够运用相似三角形求解一些简单的计算问题.4、D【解题分析】

根据三角形的中位线的性质和点的坐标,解答即可.【题目详解】过N作NE⊥y轴,NF⊥x轴,∴NE∥x轴,NF∥y轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.【题目点拨】本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.5、C【解题分析】

先根据矩形的性质得出,再利用直角三角形的性质即可得.【题目详解】四边形ABCD是矩形在中,,则故选:C.【题目点拨】本题考查了矩形的性质、直角三角形的性质,掌握矩形的性质是解题关键.6、B【解题分析】

解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.7、C【解题分析】

根据中位数和众数的概念进行求解.【题目详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【题目点拨】本题考查1.中位数;2.众数,理解概念是解题关键.8、B【解题分析】

根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【题目详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A.C.

D都不对,只有选项B正确,故选B.9、A【解题分析】

因为高h为定值,所以h是不变的量,即h是常量,所以S,a是变量,,h是常量.故选A.10、C【解题分析】

根据正比例函数图象与系数的关系列出关于k的不等式k+2<0,然后解不等式即可.【题目详解】解:∵正比例函数y=(k+2)x中,y的值随自变量x的值增大而减小,∴k+2<0,解得,k<-2;观察选项,只有选项C符合题意.故选:C.【题目点拨】本题考查正比例函数图象在坐标平面内的位置与k的关系.注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.11、A【解题分析】试题分析:交换原命题的题设与结论得到四个命题的逆命题,然后分别利用直角三角形的判定、对顶角的定义、两直线垂直的定义和平方根的定义对四个逆命题的真假进行判断.解:A、逆命题为有两角互余的三角形为直角三角形,此逆命题为真命题,所以A选项正确;B、逆命题为相等的角为对顶角,此逆命题为假命题,所以B选项错误;C、逆命题为两直线有交点,则两直线垂直,此逆命题为假命题,所以C选项错误;D、逆命题为若x2=1,则x=1,此逆命题为假命题,所以D选项错误.故选A.12、C【解题分析】

根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【题目详解】解:A、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴一次函数y=-kx+k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误.故选C.【题目点拨】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.二、填空题(每题4分,共24分)13、40cm,100cm【解题分析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.∵周长之比等于相似比.∴10/25=x/(x+60).解得x=40cm,x+60=100cm.14、D【解题分析】

根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【题目详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.【题目点拨】本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.15、21【解题分析】

由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.【题目详解】∵在平行四边形ABCD中,AC=14,BD=8,AB=10,∴OA=AC=7,OB=BD=4,∴△OAB的周长为:AB+OB+OA=10+7+4=21.故答案为:21.【题目点拨】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.16、普查【解题分析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【题目详解】对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.故答案为:普查【题目点拨】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.17、-2【解题分析】

由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【题目详解】由已知得:,解得:-<k<2.∵k为整数,∴k=-2.故答案为:-2.【题目点拨】本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.18、【解题分析】

根据平行四边形面积的表示形式及三角形的面积表达式可得出△ABE的面积为平行四边形的面积的一半.【题目详解】根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为52cm2,∴△ABE的面积为26cm2.故答案为:26.【题目点拨】本题考查平行四边形的性质,解题关键在于熟练掌握三角形的面积公式.三、解答题(共78分)19、(1)α;(2)证明见解析.【解题分析】试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.试题解析:(1)∠ADE=90°-α.(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α.由(1)知,∠ADE=90°-α,∴∠ADC=∠ADE+∠EDC=90°.∴AD⊥BC.∵AB=AC,∴BD=CD.②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知,∠DAE=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.考点:1.平行四边形的判定与性质;2.等腰三角形的性质.20、(1),;(2)规定的时间是6天.【解题分析】

(1)由“工作效率=工作量÷工作时间”即可得;(2)关键描述语为:“由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成”;本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【题目详解】(1)依题意得,甲的工作效率为,乙的工作效率为.故答案为:,;(2)依题意得:+=1,解得x=6,经检验,x=6是原方程的解且符合实际意义,答:规定的时间是6天.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21、(1)y=6x;y=x+1;(2)-3≤x<0或x≥2;(3)点P的坐标为(3,0)或(-5,【解题分析】

(1)根据反比例函数y=mx的图象经过B(2,3),利用待定系数法即可求出反比例函数的解析式;进而求得A的坐标,根据A、(2)根据A、B的坐标,结合图象即可求得;(3)根据三角形面积求出DP的长,根据D的坐标即可得出P的坐标.【题目详解】解:(1)∵反比例函数y=mx的图象经过∴m=2×3=6.∴反比例函数的解析式为y=6∵A(-3,n)在y=6x上,所以∴A的坐标是(-3,-2).把A(-3,-2)、B(2,3)代入y=kx+b.得:-3k+b=-22k+b=3解得k=1b=1∴一次函数的解析式为y=x+1.(2)由图象可知:不等式kx+b⩾mx的解集是-3⩽x<0或(3)设直线与x轴的交点为D,∵把y=0代入y=x+1得:0=x+1,x=-1,∴D的坐标是(-1,0),∵P为x轴上一点,且ΔABP的面积为10,A(-3,-2),B(2,3),∴1∴DP=4,∴当P在负半轴上时,P的坐标是(-5,0);当P在正半轴上时,P的坐标是(3,0),即P的坐标是(-5,0)或(3,0).【题目点拨】本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.22、(1)证明见解析(2)3【解题分析】试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.试题解析:(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC.∴∠F=∠1.又∵AF平分∠BAD,∴∠2=∠1.∴∠F=∠2.∴AB=BF.∴BF=CD.(2)解:∵AB=BF,∠F=60°,∴△ABF为等边三角形.∵BE⊥AF,∠F=60°,∴∠BEF=90°,∠3=30°.在Rt△BEF中,设,则,∴.∴.∴AB=BF=3.23、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.【解题分析】

(1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;(2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;(3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.【题目详解】(1)证明:作FH⊥BC于H,如图所示:

则∠BHF=90°,∵AB=BC,BD是AC边上的高,∴∠ABD=∠CBD,BD⊥AC,∵CE是AB边上的高,∴CE⊥AB,∴EF=HF,∠BEF=90°=∠BHF,在△BEF和△BHF中,∴△BEF≌△BHF(AAS),∴BE=BH,∵∠ABC=45°,∴△BCE是等腰直角三角形,∴∠BCE=45°,BE=EC=BH,∴△CFH是等腰直角三角形,∴CH=HF=EF,∴EC+EF=BH+CH=BC;(2)解:如图,由(1)知,BD平分∠ABC,∠ABC=45°,∴∠ABF=22.5°,∴∠BFE=90°-22.5°=67.5°,∵AB=BC,∠ABC=45°,∴∠A=,在直角三角形ACE中,D是AC中点,∴DE=CD=AD,∴∠DEF=∠DCF=90°-67.5°=22.5°,∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;(3)解:BC+BE=2BG,理由如下:如图,由(2)得:∠DEF=∠DCF=22.5°∴∠ADE=∠ABC=45°,∵AB=BC,∠ABC=45°,∴∠A=∠ACB=67.5°,∴∠AED=180°-∠A-∠ADE=67.5°,∴∠AED=∠A,∴DA=DE,∵DG⊥AE,∴AG=EG,∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,∴BC=BG+BG-BE,∴BC+BE=2BG.【题目点拨】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.24、(1)B(0,4),D(0,-1);(2)();(3)存在,共有3个,E点为(4,)、(-6,-4)和【解题分析】

(1)利用y轴上的点的坐标特征即可得出结论.(2)先求出点M的坐标,再用三角形的面积之和即可得出结论.(3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论