2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题含解析_第1页
2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题含解析_第2页
2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题含解析_第3页
2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题含解析_第4页
2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省广水市城郊街道办事处中学八年级数学第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.实数a在数轴上的位置如图所示,则化简后为()A.8 B.﹣8 C.2a﹣18 D.无法确定2.点关于x轴对称的点的坐标是A. B. C. D.3.五边形的内角和为()A.360° B.540° C.720° D.900°4.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)()A. B.C. D.5.下列四组线段中,能组成直角三角形的是A.,, B.,,C.,, D.,,6.如图,ΔABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的长为()A.0.72 B.1.125 C.2 D.不能确定7.已知二次函数的与的部分对应值如下表:

-1

0

1

3

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个8.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5和7D.25或79.正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是()A.2+ B.2- C.2+,2- D.4-10.对于分式方程,有以下说法:①最简公分母为(x﹣3)2;②转化为整式方程x=2+3,解得x=5;③原方程的解为x=3;④原方程无解.其中,正确说法的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.12.正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.13.已知一次函数,当时,对应的函数的取值范围是,的值为__.14.若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.15.在函数y=x+2x中,自变量x的取值范围是_______16.如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.17.先化简:,再对a选一个你喜欢的值代入,求代数式的值.18.已知方程的解满足x﹣y≥5,则k的取值范围为_____.三、解答题(共66分)19.(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.20.(6分)已知关于x的一元二次方程有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且,求m的值.21.(6分)一只不透明的袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)摸到的球的颜色可能是______;(2)摸到概率最大的球的颜色是______;(3)若将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(黄)、5号球(黄)、6号球(白),那么摸到1~6号球的可能性______(填相同或者不同);(4)若在袋子中再放一些这样的黄球,从中任意摸出1个球,使摸到黄球的概率是,则放入的黄球个数是______.22.(8分)甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘千克,在甲、乙采摘园所需总费用为、元,、与之间的函数关系的图像如图所示.(1)分别求出、与之间的函数关系式;(2)求出图中点、的坐标;(3)若该游客打算采摘圣女果,根据函数图像,直接写出该游客选择哪个采摘园更合算.23.(8分)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.[来根据以上信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.24.(8分)已知反比例函数的图像与一次函数的图像的一个交点的横坐标是-1.(1)求的值,并画出这个反比例函数的图像;(2)根据反比例函数的图像,写出当时,的取值范围.25.(10分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.26.(10分)甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.(1)直接写出y甲、y乙与x之间的函数表达式;(2)如图,过点(1,0)作x轴的垂线,分别交y甲、y乙的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

先依据a在数轴上的位置确定出a﹣5、a﹣13的正负,然后再依据二次根式的性质、绝对值的性质进行化简即可.【题目详解】由题意可知6<a<12,∴a﹣5>0、a﹣13<0,∴+=|a﹣5|+|a﹣13|=a﹣5+13﹣a=1.故选A.【题目点拨】本题主要考查的是二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.2、A【解题分析】

根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.【题目详解】由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,故选A.【题目点拨】本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【解题分析】

n边形的内角和是(n﹣2)180°,由此即可求出答案.【题目详解】解:五边形的内角和是(5﹣2)×180°=540°.故选B.【题目点拨】本题考查了多边形的内角和,熟练掌握多边形内角和公式是解题的关键.4、C【解题分析】

由题意结合函数图象的性质与实际意义,进行分析和判断.【题目详解】解:∵小刚在原地休息了6分钟,∴排除A,又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,∴排除B、D,只有C满足.故选:C.【题目点拨】本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.5、D【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;

B.2²+3²≠4²故不是直角三角形,故本选项错误;

C.2²+4²≠5²,故不是直角三角形,故本选项错误;

D.3²+4²=5²,故是直角三角形,故本选项正确.

故选D.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、A【解题分析】

先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【题目详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=∴AB∴∠ACB=90°,∵CD是AB边上的高,∴S1.5CD=1.2×0.9,CD=0.72.故选A.【题目点拨】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题,解题的方法是运用勾股定理首先证明△ABC为直角三角形,解题的关键是灵活运用三角形的面积公式来解答.7、B【解题分析】

解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质8、D【解题分析】

已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【题目详解】解:①若4是直角边,则第三边x是斜边,由勾股定理,得42+32=x2,所以x2=25;②若4是斜边,则第三边x为直角边,由勾股定理,得x2=42-32,所以x2=7;故x2=25或7.故选D.【题目点拨】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9、C【解题分析】

由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.【题目详解】解:∵等边△ADE的边长为2∴点E到AD上的距离EG为,当△ADE在正方形外面,∴点E到BC的距离=2+当△ADE在正方形里面∴点E到BC的距离=2-故选:C.【题目点拨】本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.10、A【解题分析】

观察可得最简公分母为(x﹣3),然后方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意要检验.【题目详解】解:最简公分母为(x﹣3),故①错误;方程的两边同乘(x﹣3),得:x=2(x﹣3)+3,即x=2x﹣6+3,∴x﹣2x=﹣3,即﹣x=﹣3,解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原分式方程无解.故②③错误,④正确.故选A.【题目点拨】此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.二、填空题(每小题3分,共24分)11、23%【解题分析】

根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.【题目详解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),

B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,再根据题意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理组成方程组得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(约37.85则z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均为整数,则只有x=20y=25则把起初A、B两瓶酒精混合后的浓度为:2000×20%+3000故答案为:23%.【题目点拨】本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.12、4【解题分析】

把x=代入各函数求出对应的y值,即可求解.【题目详解】x=代入得x=代入得∴4【题目点拨】此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.13、4.【解题分析】

根据题意判断函数是减函数,再利用特殊点代入解答即可.【题目详解】当时,随的增大而减小,即一次函数为减函数,当时,,当时,,代入一次函数解析式得:,解得,故答案为:4.【题目点拨】本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.14、2【解题分析】

先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【题目详解】解:解方程得第三边的边长为2或1.第三边的边长,第三边的边长为1,这个三角形的周长是.故答案为2.【题目点拨】本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.15、x≥﹣2且x≠0【解题分析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.16、乙【解题分析】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差,∴乙的成绩比较稳定.故答案为乙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、;3【解题分析】

原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.【题目详解】原式.∵且∴当a=3时,原式=【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、k≥1【解题分析】

两方程相减可得x﹣y=4k﹣3,根据x﹣y≥5得出关于k的不等式,解不等式即可解答.【题目详解】两方程相减可得x﹣y=4k﹣3,∵x﹣y≥5,∴4k﹣3≥5,解得:k≥1,故答案为:k≥1.【题目点拨】本题考查一元一次不等式的应用,根据题意列出关于k的不等式是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析【解题分析】

解:(1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元y1=(x−4)×5+20×4=5x+60,y2=(5x+20×4)×0.9=4.5x+72.(2)分为三种情况:①∵设y1=y2,5x+60=4.5x+72,解得:x=24,∴当x=24时,选择优惠方法①,②均可;②∵设y1>y2,即5x+60>4.5x+72,∴x>24.当x>24整数时,选择优惠方法②;③当设y1<y2,即5x+60<4.5x+72∴x<24∴当4⩽x<24时,选择优惠方法①.(3)因为需要购买4个书包和12支水性笔,而12<24,购买方案一:用优惠方法①购买,需5x+60=5×12+60=1元;购买方案二:采用两种购买方式,用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要元.共需80+36=116元.显然116<1.最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.20、①,②m的值为.【解题分析】

①根据“关于x的一元二次方程有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可。②根据“x1,x2是方程的两根且”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.【题目详解】解:①根据题意得:,解得:,②根据题意得:,,,解得:,(不合题意,舍去),∴m的值为.【题目点拨】本题考查了根与系数的关系,根的判别式,解题的关键:①正确掌握判别式公式,②正确掌握根与系数的关系.21、(1)红、黄、白;(2)红色;(3)相同;(1)1【解题分析】

(1)根据袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,可知摸到的球的颜色可能是红、黄、白;(2)哪种球的数量最多,摸到那种球的概率就最大;(3)根据概率公式可得答案;(1)设放入的黄球个数是x,根据摸到黄球的概率是,列出关于x的方程,解方程即可.【题目详解】解:(1)根据题意,可得摸到的球的颜色可能是红、黄、白.故答案为红、黄、白;(2)根据题意,可得摸到概率最大的球的颜色是红色.故答案为红色;(3)∵将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、1号球(黄)、5号球(黄)、6号球(白),∴摸到1~6号球的概率都是,即摸到1~6号球的可能性相同.故答案为相同;(1)设放入的黄球个数是x,根据题意得,=,解得x=1.故答案为1.【题目点拨】本题考查了概率公式,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.22、(1)与之间的函数关系式为;与之间的函数关系式为;(2);(3)甲【解题分析】

(1)根据单价=总价÷数量,即可求出甲、乙两采摘园优惠前的草莓销售价格;函数关系式=60+单价×数量;与之间的函数关系式结合图像,利用待定系数法即可解决;(2)分两段,求函数交点即可解决;(3)当时,根据y1和y2函数图象分析,图象在下方的价格低.【题目详解】(1)由图得单价为(元),据题意,得当时,,当时由题意可设,将和分别代入中,得,解得,故与之间的函数关系式为(2)联立,,得,故.联立,,得解得,故.(3)当时,y1的函数图象在y2函数图象下方,故甲采摘园更合算.【题目点拨】本题考查了一次函数的应用,注意分段函数要分别讨论;熟练掌握待定系数法以及根据图象分析函数大小是解答本题的关键.23、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解题分析】试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.试题解析:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.24、(1),图像见解析,(2).【解题分析】

(1)根据题意,先将代入一次函数,求得,即可求得交点坐标,再将交点坐标代入反比例函数解析式,即可求得,根据描点法即可画出图像;(2)将,代入反比例函数解析式,即可求得值,当时,观察图像即可求得的取值范围.【题目详解】解:(1)根据题意,将代入,解得,∴交点坐标为(-1,-2),再代入反比例函数中,解得,∴反比例函数解析式为,列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论