2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省邢台宁晋县联考八年级数学第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列式子一定是二次根式的是()A. B. C. D.2.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.3.把中根号外的(a-1)移入根号内,结果是()A. B. C. D.4.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.5.下列二次根式中,是最简二次根式的为()A. B. C. D.6.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.7.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)8.若分式的值为0,则b的值为(

)A.1 B.-1 C.±1 D.29.如图,设线段AC=1.过点C作CD⊥AC,并且使CD=AC:连结AD,以点D为圆心,DC的长为半径画弧,交AD于点E;再以点A为圆心,AE的长为半径画弧,交AC于点B,则AB的长为()A. B. C. D.10.二次根式在实数范围内有意义,那么的取值范围是()A. B. C. D.11.在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.1512.下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000二、填空题(每题4分,共24分)13.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.14.关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.15.化简:___________.16.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.17.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.18.如图,在边长为的菱形中,,是边的中点,是对角线上的动点,连接,,则的最小值______.三、解答题(共78分)19.(8分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.20.(8分)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.21.(8分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.22.(10分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点F,使四边形AECF为平行四边形,并说明理由.23.(10分)如图1,在正方形ABCD中,对角线AC,BD交于点O,点E在AB上,点F在BC的延长线上,且AECF.连接EF交AC于点P,分别连接DE,DF.(1)求证:ADECDF;(2)求证:PEPF;(3)如图2,若PEBE,则的值是.(直接写出结果即可).24.(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.25.(12分)如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)26.(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据二次根式的定义:形如(a≥0)的式子叫做二次根式,逐一判断即可.【题目详解】解:A.当x=0时,不是二次根式,故本选项不符合题意;B.当x=-1时,不是二次根式,故本选项不符合题意;C.无论x取何值,,一定是二次根式,故本选项符合题意;D.当x=0时,不是二次根式,故本选项不符合题意.故选C.【题目点拨】此题考查的是二次根式的判断,掌握二次根式的定义是解决此题的关键.2、C【解题分析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.3、C【解题分析】

先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.【题目详解】∵要是根式有意义,必须-≥0,∴a-1<0,∴(a-1)=-,故选C.【题目点拨】本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.4、C【解题分析】

解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.5、C【解题分析】试题解析:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选C.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6、B【解题分析】

由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【题目详解】∵菱形ABCD中,∠D=135°,

∴∠BCD=45°,

∵BE⊥CD于E,FG⊥BC于G,

∴△BFG与△BEC是等腰直角三角形,

∵∠GCF=∠ECF,∠CGF=∠CEF=90°,

CF=CF,

∴△CGF≌△CEF(AAS),

∴FG=FE,CG=CE,

设BG=FG=EF=x,

∴BF=x,

∵△BFG的周长为4,

∴x+x+x=4,

∴x=4-2,

∴BE=2,

∴BC=BE=4,

∴菱形ABCD的面积=4×2=8,

故选:B.【题目点拨】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.7、C【解题分析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【题目详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【题目点拨】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.8、A【解题分析】分析:根据分式的分子为零分母不为零,可得答案.详解:分式的值为0,得,解得b=1,b=-1(不符合条件,舍去),故选A.点睛:本题考查了分式值为零的条件,分式的分子为零分母不为零是解题关键.9、B【解题分析】

根据勾股定理求得AD的长度,则AB=AE=AD-CD.【题目详解】解:如图,AC=1,CD=AC=,CD⊥AC,∴由勾股定理,得AD=,又∵DE=DC=,∴AB=AE=AD-CD=-=,故选:B.【题目点拨】本题考查了勾股定理.根据勾股定理求得斜边AD的长度是解题的关键.10、A【解题分析】

二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【题目详解】∵在实数范围内有意义,∴x−2⩾0,解得x⩾2.故选A.【题目点拨】此题考查二次根式有意义的条件,解题关键在于掌握运算法则11、C【解题分析】

首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【题目详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,∠B=∠D∠BAC=∠DAC∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【题目点拨】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.12、D【解题分析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【题目详解】解:A、明天的天气阴是随机事件,故错误;

B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;

C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;

D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.【题目点拨】本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.二、填空题(每题4分,共24分)13、36°【解题分析】

由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【题目详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.14、-1【解题分析】

方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.【题目详解】解:将x=1代入方程得:1+3+m﹣1=0,解得:m=﹣1,故答案为﹣1.【题目点拨】本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.15、【解题分析】

被开方数因式分解后将能开方的数开方即可化简二次根式.【题目详解】,故答案为:.【题目点拨】此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.16、【解题分析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【题目点拨】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.17、(﹣4,3).【解题分析】

求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【题目详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=,∴y=x+6,∴P(x,x+6),由题意:×6×(x+6)=1,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【题目点拨】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.18、【解题分析】

根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点,据此可以作对称点,找到最小值.【题目详解】解:连接AE.∵四边形ABCD为菱形,∴点C、A关于BD对称,∴PC=AP,∴PC+EP=AP+PE,∴当P在AE与BD的交点时,AP+PE最小,∵E是BC边的中点,∴BE=1,∵AB=2,B=60°,∴AE⊥BC,此时AE最小,为,最小值为.【题目点拨】本题考查了线段之和的最小值,熟练运用菱形的性质是解题的关键.三、解答题(共78分)19、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.【解题分析】

(1)理由待定系数法求出点D坐标即可解决问题;(2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.【题目详解】解:(1)当m=-2,n=1时,直线的解析式为y=-2x+1,当x=1时,y=-1,∴B(1,-1),∴BC=1.(2)结论:四边形OBDA是平行四边形.理由:如图,∵BD∥x轴,B(1,1-m),D(4,3+m),∴1-m=3+m,∴m=-1,∵B(1,m+n),∴m+n=1-m,∴n=3,∴直线y=-x+3,∴A(3,0),∴OA=3,BD=3,∴OA=BD,OA∥BD,∴四边形OBDA是平行四边形.【题目点拨】本题考查一次函数图象上点的特征,平行四边形的判断等知识,解题的关键是熟练掌握待定系数法,灵活运用所学知识解决问题,属于中考常考题型.20、(x﹣1)2+3;8.【解题分析】

原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【题目详解】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.故答案为(x﹣1)2+3;8.【题目点拨】本题考查了二次根式的化简求值.21、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【解题分析】

(1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;(2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.【题目详解】解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,,解得,x=200,经检验,x=200是原分式方程的解,∴x﹣60=140,答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)由题意可得,w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,∴m≥(200﹣m),解得,m≥50,∴当m=50时,w取得最大值,此时w=31500,答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【题目点拨】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.22、见详解.【解题分析】

连接AC、BD交于点O,连接EO并延长交CD于点F;由平行四边形的性质得出AB∥CD,OA=OC,证明△AEO≌△CFO,得出AE=CF,即可得出结论.【题目详解】解:连接AC、BD交于点O,连接EO并延长交CD于点F;

则四边形AECF为平行四边形;理由如下:

∵四边形ABCD是平行四边形,

∴AB∥CD,OA=OC,

∴∠EAO=∠FCO,

在△AEO和△CFO中,,

∴△AEO≌△CFO(ASA),

∴AE=CF,

又∵AE∥CF,

∴四边形AECF为平行四边形.【题目点拨】本题考查平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.23、(1)证明见解析;(2)证明见解析;(3).【解题分析】

(1)根据证明即可;(2)作交的延长线于,根据四边形是正方形,即可得到,再根据得到,从而,则,根据可证,即可得证;(3)如图2中,作于,首先证明,设,则,,求出即可解决问题.【题目详解】(1)证明:四边形是正方形,,,,;(2)证明:作交的延长线于,四边形是正方形,,,,,,,,,;(3)如图2中,作于,由(2)可知:,,,,,,,,,,,设,则,,,.故答案为.【题目点拨】本题考查了正方形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.24、(1)见解析;(2)MN=310【解题分析】

(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=35,由勾股定理即可求出MN【题目详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=32∴MN=OM【题目点拨】本题主要考查正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论