版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市名校2024届数学八年级第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列根式是最简二次根式的是()A.2 B.23 C.9 D.2.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.=C.= D.=3.若分式有意义,则x的取值应该该满足()A.x= B.x= C.x≠ D.x≠4.已知某一次函数的图象与直线平行,且过点(3,7),那么此一次函数为()A. B. C. D.5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)4849505152车辆数(辆)46721则上述车速的中位数和众数分别是()A.49,50 B.49.5,7 C.50,50 D.49.5,506.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,BC=6,则下列正确的是()A.ED=BE B.ED=2BE C.ED=3BE D.ED=4BE7.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(
)A.4 B.3 C.2 D.8.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为()A.50° B.60° C.70° D.80°9.一次函数的图象可能是()A. B. C. D.10.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成11.下列命题是真命题的是()A.四边都是相等的四边形是矩形 B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形 D.对角线相等的平行四边形是矩形12.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分二、填空题(每题4分,共24分)13.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.14.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.15.若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.16.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是________.17.某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.18.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.三、解答题(共78分)19.(8分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60km/h(即),并在离该公路100m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)20.(8分)如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.21.(8分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.(1)求直线AC的函数解析式;(2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.22.(10分)已知:直线y=与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△CBO沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出点A、点B的坐标:(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:①符合要求的P点有几个?②写出一个符合要求的P点坐标.23.(10分)将沿直线平移到的位置,连接、.(1)如图1,写出线段与的关系__________;(2)如图1,求证:;(3)如图2,当是边长为2的等边三角形时,以点为原点,所在的直线为轴建立平面直角坐标系.求出点的坐标,使得以、、、为顶点的四边形是平行四边形.24.(10分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′.(1)求证:△ABD≌△ACD′;(1)如图1,若∠BAC=110°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;(3)如图3,若∠BAC=90°,求证:DE1=BD1+EC1.25.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)26.将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【题目点拨】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、B【解题分析】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【题目详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.故选B.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3、C【解题分析】
由题意根据分式有意义的条件是分母不等于零列出不等式,解不等式即可得到答案.【题目详解】解:分式有意义,则2x﹣3≠0,解得,x≠.故选:C.【题目点拨】本题考查分式有意义的条件,熟练掌握分式有意义的条件即分母不等于零是解题的关键.4、B【解题分析】
一次函数的图象与直线y=2x平行,所以k值相等,即k=2,又因该直线过点(3,7),所以就有7=6+b,从而可求出b的值,进而解决问题.【题目详解】∵一次函数y=kx+b的图象与直线平行,∴k=2,则即一次函数的解析式为y=2x+b.∵直线过点(3,7),∴7=6+b,∴b=1.∴直线l的解析式为y=2x+1.故选B.【题目点拨】此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.5、D【解题分析】
根据中位数的众数定义即可求出.【题目详解】车辆总数为:4+6+7+2+1=20辆,则中位数为:(第10个数+第11个数)众数为出现次数最多的数:50故选D【题目点拨】本题考查了中位数和众数,难度低,属于基础题,熟练掌握中位数的求法是解题关键.6、C【解题分析】
根据矩形的性质,AD=BC=6,则根据直角三角形的性质,得到∠ADE=30°,则得到∠BAE=30°,利用勾股定理求出DE的长度和BE的长度,即可得到答案.【题目详解】解:在矩形ABCD中,∠BAD=90°,AD=BC=6,∵AE⊥BD,AE=3,∴,∵Rt△ADE中,,∴∠ADE=30°,∵,∴,∴,∵,即,∴,∴;故选:C.【题目点拨】本题考查了矩形的性质,利用勾股定理解直角三角形,含30°直角三角形的性质,以及同角的余角相等,解题的关键是熟练掌握所学的知识,正确求出DE和BE的长度.7、B【解题分析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【题目详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【题目点拨】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.8、B【解题分析】
由折叠的性质可得AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED【题目详解】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.【题目点拨】本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.9、A【解题分析】
根据一次函数的图象与系数的关系进行解答即可【题目详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A正确.故选:A.【题目点拨】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.10、C【解题分析】
由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【题目详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【题目点拨】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.11、D【解题分析】
根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.【题目详解】A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选D.【题目点拨】熟练掌握特殊平行四边形的各自特点,矩形对角线相等,邻边垂直.菱形对角线垂直且平分对角,邻边相等.同时具备矩形和菱形的四边形是正方形.12、C【解题分析】
根据矩形的性质即可判断.【题目详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【题目点拨】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题(每题4分,共24分)13、(1,0)【解题分析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).14、﹣2≤m≤1【解题分析】
由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.【题目详解】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=1经过点A时,则m=1,当直线y=1经过点B时,m+2=1,则m=﹣2;∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.【题目点拨】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.15、1【解题分析】分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.故答案为1.点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.16、14.【解题分析】试题分析:根据加权平均数计算公式可得.考点:加权平均数.17、2【解题分析】
根据题意先确定x的值,再根据中位数的定义求解.【题目详解】解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为2,根据题意得:解得x=2,将这组数据从小到大的顺序排列1,2,2,2,12,处于中间位置的是2,所以这组数据的中位数是2.故答案为2.【题目点拨】本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.18、841【解题分析】
认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【题目详解】解:由已知等式可知,,∴故答案为:84、1.【题目点拨】本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.三、解答题(共78分)19、见解析【解题分析】试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.解:(1)在Rt△AOB中,∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.∵OA=100m,∴AB=200m.由勾股定理,得OB==100(m).在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA=100m.∴B(-100,0),C(100,0).(2)∵BC=BO+CO=(100+100)m,≈18>,∴这辆汽车超速了.20、(1)y=x+5;(2);(1)x>-1.【解题分析】
(1)利用待定系数法求一次函数解析式即可;(2)联立两直线解析式,解方程组可得到两直线交点C的坐标,即可求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(1)根据图形,找出点C右边的部分的x的取值范围即可.【题目详解】解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),,解得,∴直线AB的表达式为:y=x+5;(2)∵若直线y=-2x-4与直线AB相交于点C,∴,解得,故点C(-1,2).∵y=-2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),直线CE:y=-2x-4与直线AB及y轴围成图形的面积为:DE•|Cx|=×9×1=;(1)根据图象可得x>-1.故答案为:(1)y=x+5;(2);(1)x>-1.【题目点拨】本题考查待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,解题的关键是从函数图象中获得正确信息.21、(1);(2)①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)【解题分析】
(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.【题目详解】解:(1)∵OA=3,OC=4,
∴A(-3,0)、C(0,4).
设直线AC的函数解析式为y=kx+b,
将点A(-3,0)、C(0,4)代入y=kx+b中,
得:,解得:,∴直线AC的函数解析式为:.(2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
∴m≤4,BC=4-m,
∴S=BC•OA=-3m+12(m≤4).
同法m>4时,S=3m-12(m>4).
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴当BD⊥y轴时,BD最小(如图1).
∵AD∥OB,AO⊥OB,DA⊥OB,
∴四边形AOBD为矩形,
∴AD=OB=BC,
∴点B为OC的中点,即,此时S=-3×2+12=1.
∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.(3)存在当AB=CB时,平行四边形ABCD为菱形.理由如下:∵平行四边形ABCD是菱形,
∴AB=BC.,,解得:,.【题目点拨】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;22、(1)B(0,6),A(﹣8,0).(2)1;(3)①3个;②P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).【解题分析】
(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.(3)①根据平行四边形的定义画出图形即可判断.②利用平行四边形的性质求解即可解决问题.【题目详解】(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).(2)∵A(﹣8,0).B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB===10,由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,∴AD=AB﹣BD=4,设CD=OC=x,在Rt△ADC中,∵∠ADC=90°,∴AD2+CD2=AC2,∴42+x2=(8﹣x)2,解得x=3,∴OC=3,AC=OA﹣OC=8﹣3=1.(3)①符合条件的点P有3个如图所示.②∵A(﹣8,0),C(﹣3,0),B(0,6),可得P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).【题目点拨】本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题23、(1)且;(2)见解析;(3),,【解题分析】
(1)根据平行四边形的判定与性质即可求解;(2)过作,设,,根据勾股定理与平行四边形的性质即可求解;(3)先根据等边三角形的性质求出,,,根据平行四边形的性质求出,,再分以为对角线时的一种情况,②以为边时的两种情况分别进行讨论求解.【题目详解】(1)∵将沿直线平移到的位置,∴AO∥DB,AO=DB,故答案为:AO∥DB且AO=DB,(2)解:过作,设,,在中,,在中,,在中,,∴∵∴∵∴∵且∴四边形为平行四边形∴,∴(3)解:如图所示,满足题意的点坐标有3个。∵等边的边长为2∴,,∵,∴四边形为平行四边形∴∴∵∴①以为对角线时,四边形为平行四边形∴,∴.②以为边时,有两种情况:当四边形为平行四边形时,∴.当四边形为平行四边形时,,∵,∴∴.综上所述,满足题意的坐标有:,,.【题目点拨】此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的判定与性质、直角坐标系及勾股定理的应用.24、(1)见解析;(1)BD=DE=CE的数量关系时,△CD′E是正三角形;(3)见解析.【解题分析】
(1)根据轴对称的性质得到AD=AD`,即可证明△ABD≌△ACD′(1)由(1)可得∠BAD=∠CAD′,∠B=∠ACD′,再根据轴对称的性质得到∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,得到△CD′E是正三角形,即可解答(3)利用勾股定理即可解答【题目详解】(1)证明:∵△ADE与△AD′E是关于AE的轴对称图形,∴AD=AD′,在△ABD和△ACD′中,,∴△ABD≌△ACD′(SSS);(1)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∠B=∠ACD′,∵△ADE与△AD′E是关于AE的轴对称图形,∴∠DAE=∠EAD′,DE=ED′,∴∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,∵△CD′E是正三角形,∴CE=CD′=ED′,∵BD=CD′,DE=ED′,∴BD=DE=CE;(3)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠ECD′=90°,∴ED′1=CD′1+EC1,∵BD=CD′,DE=ED′,∴DE1=BD1+EC1.【题目点拨】此题考查全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,解题关键在于利用全等三角形的性质进行解答25、(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+1;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【解题分析】
(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【题目详解】解:(1)由图①可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 啤酒采购合同模板
- 新鲜蔬菜购销合同
- 商场清洁劳务协议
- 2024荒山承包经营合同
- 2024年度汽车修理企业专利申请与维权合同2篇
- 股东权益共同合同
- 冷热设备购销合同
- 木工装修工程队合作协议范式
- 墙体填充劳务合作协议
- 私人门市合同模板
- 2024年新人教版五年级数学下册《第2单元第1课时 因数和倍数的认识(1)》教学课件
- 认养树的合同(2篇)
- 第四单元(整体教学课件)七年级语文上册大单元教学名师备课系列(统编版2024)
- 2024年浙江省衢州市营商环境建设办公室招聘政府雇员17人高频难、易错点500题模拟试题附带答案详解
- 中国急性缺血性卒中诊治指南(2023版)
- 劳动法律学习试题
- 中考英语过去将来时趣味讲解动态课件(43张课件)
- 人教版2024-2025学年六年级数学上册专项提升第三单元专练篇·03:分数除法混合运算和简便计算其二(原卷版+解析)
- 2024世界邮政日主题世界邮政日活动方案
- 教育家精神引领师范生高质量培养的路径探析
- 解除产品代理商合同范本
评论
0/150
提交评论