云南省昆明市八校联考2024届数学八下期末达标测试试题含解析_第1页
云南省昆明市八校联考2024届数学八下期末达标测试试题含解析_第2页
云南省昆明市八校联考2024届数学八下期末达标测试试题含解析_第3页
云南省昆明市八校联考2024届数学八下期末达标测试试题含解析_第4页
云南省昆明市八校联考2024届数学八下期末达标测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市八校联考2024届数学八下期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若从边形的一个顶点出发,最多可以作3条对角线,则该边形的内角和是()A. B. C. D.2.已知三角形的三边为2、3、4,该三角形的面积为()A. B. C. D.3.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.4 B.6 C.8 D.104.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.2 B.3 C.4 D.85.下列代数式属于分式的是()A. B. C. D.6.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)

5

6

7

8

人数

10

15

20

5

则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.4小时 C.6.5小时 D.7小时7.如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.1 B.1 C.3 D.28.在方差公式中,下列说法不正确的是()A.n是样本的容量 B.是样本个体 C.是样本平均数 D.S是样本方差9.一次函数y=x-1的图像向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个11.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数12.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-二、填空题(每题4分,共24分)13.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.14.要使有意义,则x的取值范围是_________.15.在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.16.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.17.关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.18.已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.三、解答题(共78分)19.(8分)先化简,再求值:,其中x=.20.(8分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=______,n=______;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.21.(8分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?22.(10分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;23.(10分)因式分解:(1)2x3﹣8x;(2)(x+y)2﹣14(x+y)+4924.(10分)服装店去年10月以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍,求每件羽绒服的标价是多少元.25.(12分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?26.某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:月用水量(吨)户数求这户家庭月用水量的平均数、众数和中位数;根据上述数据,试估计该社区的月用水量;由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=3,求出n的值,最后根据多边形内角和公式可得结论.【题目详解】由题意得:n-3=3,解得n=6,则该n边形的内角和是:(6-2)×180°=720°,故选B.【题目点拨】本题考查了多边形的对角线和多边形的内角和公式,熟记n边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.2、D【解题分析】

如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【题目详解】如图所示:过点B作BD⊥AC于点D,

设BD=x,CD=y,

则AD=4-y,在Rt△BDC中,x2+y2=32,

在Rt△ABD中,x2+(4-y)2=22,

故9+16-8y=4,解得:y=,

∴x2+()2=9,解得:x=故三角形的面积为:故选:D.【题目点拨】本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.3、D【解题分析】

根据,将代数式变形,再代值计算即可.【题目详解】解:,当,时原式,故选:D.【题目点拨】本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.4、C【解题分析】

直接利用线段垂直平分线的性质得出AD=CD,进而结合已知角得出DC,BC的长,进而利用勾股定理得出答案.【题目详解】连接DC,在Rt△BCA中,∵DE为AC的垂直平分线,∴AD=CD,∴∠A=∠DCA=30°,∴∠BDC=60°,在Rt△CBD中,BD=2,,解得:DC=4,BC=2,在Rt△CBA中,BC=2,AC=2BC=4故选C.【题目点拨】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC的长是解题关键.5、A【解题分析】

形如(A、B均为整式,B中有字母,)的式子是分式,根据分式的定义解答.【题目详解】根据分式的定义得到:是分式,、、均不是分式,故选:A.【题目点拨】此题考查分式的定义,熟记定义掌握定义中的A及B的要求是解答问题的关键.6、B【解题分析】平均数是指在一组数据中所有数据之和再除以数据的个数.因此,这50名学生这一周在校的平均体育锻炼时间是=6.4(小时).故选B.7、C【解题分析】

利用基本作图得到BG平分∠ABC,再证明△BCG为等腰直角三角形得到GC=CB=4,从而计算CD-CG即可得到DG的长.【题目详解】由图得BG平分∠ABC,

∵四边形ABCD为矩形,CD=AB=7,

∴∠ABC=∠B=,

∴∠CBG=,

∴△BCG为等腰直角三角形,

∴GC=CB=4,

∴DG=CD−CG=7−4=3.

故选:C.【题目点拨】本题考查等腰直角三角形的性质,解题的关键是得到GC=CB=4.8、D【解题分析】

根据方差公式中各个量的含义直接得到答案.【题目详解】A,B,C都正确;是样本方差,故D选项错误.故选D.9、D【解题分析】试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D.考点:一次函数图象与几何变换.10、A【解题分析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【题目详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【题目点拨】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.11、B【解题分析】

平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【题目详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【题目点拨】考核知识点:均数、众数、中位数、方差的意义.12、B【解题分析】

根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【题目详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【题目点拨】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.二、填空题(每题4分,共24分)13、1【解题分析】试题解析:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=41°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==1cm.故答案为1.14、.【解题分析】

根据二次根式有意义的条件即可解答.【题目详解】∵有意义,∴2x+5≥0,解得,.故答案为:.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.15、1<x<2或x>2+.【解题分析】

先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.【题目详解】由题意可得抛物线:y=(x−2),对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=−(x−2);如图,由题意得:当y=1时,(x−2)=1,解得:x=2+,x=2−,∴C(2−,1),F(2+,1),当y=1时,−(x−2)=1,解得:x=3,x=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;故答案为1<x<2或x>2+.【题目点拨】此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.16、1【解题分析】

设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【题目详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).

则AB=m,OB=n,mn=k.

∵△ABP的面积为2,

∴AB•OB=2,即mn=2

∴mn=1,则k=mn=1.

故答案是:1.【题目点拨】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.17、m<【解题分析】

根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.【题目详解】解:∵一元二次方程有两个不相等的实数根,∴△=(-3)2−4m>0,∴m<,故答案为:m<.【题目点拨】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.18、5或【解题分析】

由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.【题目详解】分两种情况,当4为直角边时,c为斜边,c==5;当长4的边为斜边时,c==,故答案为:5或.【题目点拨】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.三、解答题(共78分)19、,【解题分析】

先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【题目详解】解:原式====.当x=时,原式==.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20、(1)4;1;(2)见解析;(3)B;(4)48.【解题分析】

(1)根据题目中的数据即可直接确定m和n的值;

(2)根据(1)的结果即可直接补全直方图;

(3)根据中位数的定义直接求解;

(4)利用总人数乘以对应的比例即可求解.【题目详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;

9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,

而第10、11个数据的平均数均落在B组,

∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×=48(人),

答:估计其中一天行走步数不少于7500步的有48人.故答案为48.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、10【解题分析】

试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.考点:1.勾股定理的运用;2.矩形性质.【题目详解】请在此输入详解!22、(1)见解析;(2)AB、AD的长分别为3和1【解题分析】

(1)根据全等三角形的判定和性质以及矩形的判定解答即可;

(2)根据全等三角形的性质和勾股定理解答即可.【题目详解】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=1.∴AD=1.即AB、AD的长分别为3和1.【题目点拨】此题考查矩形的判定与性质以及勾股定理.注意利用勾股定理求线段AD的长是解题关键.23、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.【解题分析】

(1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;(1)直接利用完全平方公式分解因式得出答案.【题目详解】解:(1)原式=1x(x1﹣4)=1x(x+1)(x﹣1);(1)原式=(x+y﹣7)1.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24、每件羽绒服的标价为700元【解题分析】

设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的销售量是10月份的1.5倍.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论