广东省河源市名校2024届八年级数学第二学期期末达标检测试题含解析_第1页
广东省河源市名校2024届八年级数学第二学期期末达标检测试题含解析_第2页
广东省河源市名校2024届八年级数学第二学期期末达标检测试题含解析_第3页
广东省河源市名校2024届八年级数学第二学期期末达标检测试题含解析_第4页
广东省河源市名校2024届八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省河源市名校2024届八年级数学第二学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为()A.或 B.C. D.或2.下列各组线段中,能够组成直角三角形的一组是()A.,, B.2,3,4C.4,5,6 D.1,,3.如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点,依次作下去,若点的纵坐标是1,则的纵坐标是().A. B. C. D.4.关于的一元二次方程有一个根为,则的值为()A. B. C. D.5.设的整数部分是,小数部分是,则的值为().A. B. C. D.6.某校七年级体操比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各班代表队得分的中位数和众数分别是()A.7,7 B.7,8 C.8,7 D.8,87.如图是某种产品30天的销售图象,图1是产品日销售量y(件)与时间t(天)的函数关系,图2是一件产品的利润z(元)与时间t(天)的函数关系.则下列结论中错误的是()A.第24天销售量为300件 B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元 D.第15天与第30天的日销售量相等8.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1) B.图象经过一、二、三象限C.y随x的增大而增大 D.当x>时,y<09.下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. B. C. D.10.如图,在中,,垂足为,,,则的长为()A. B. C. D.11.如图是用程序计算函数值,若输入的值为3,则输出的函数值为()A.2 B.6 C. D.12.下列所给图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知直角三角形的两直角边、满足,则斜边上中线的长为______.14.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AO=3,AE垂直平分OB于点E,则AD的长为_____.16.将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.17.已知a+b=4,ab=2,则的值等于_____.18.如图,在Rt△ABC中,∠C=90°,AD=BE=2,点M,P,N分别是DE,BD,AB的中点,则△PMN的周长=___.三、解答题(共78分)19.(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?20.(8分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?21.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.22.(10分)下表给出三种上宽带网的收费方式.收费方式月使用费/元包时上网时间/超时费/(元/)不限时设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;填空:当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;23.(10分)为了了解某公司员工的年收入情况,随机抽查了公司部分员工年收入情况并绘制如图所示统计图.(1)请按图中数据补全条形图;(2)由图可知员工年收入的中位数是,众数是;(3)估计该公司员工人均年收入约为多少元?24.(10分)如图,直线与轴相交于点,与轴相交于于点.(1)求,两点的坐标;(2)过点作直线与轴相交于点,且使,求的面积.25.(12分)下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。26.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=°(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.【题目详解】解:观察图像得:的解集是:或.故选D.【题目点拨】本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.2、D【解题分析】

利用勾股定理的逆定理求解即可.【题目详解】A、因为,,故A项错误.B、因为,,故B错误.C、因为,,故C项错误.D、因为,,故D项正确.故选D.【题目点拨】本题主要考查直角三角形.利用勾股定理逆定理判定:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.3、B【解题分析】

由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.【题目详解】∵点B1的纵坐标是1,∴A1(,1),B1(,1).∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.故选B.【题目点拨】本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.4、C【解题分析】

首先根据题意,将这个根代入方程,然后即可得解.【题目详解】由已知条件,将0代入方程,得解得故答案为C.【题目点拨】此题主要考查根据一元二次方程的根求参数的值,熟练运用,即可解题.5、B【解题分析】

只需首先对

估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.【题目详解】解:∵4<5<9,∴1<<2,∴-2<<-1.∴1<<2.∴a=1,∴b=5--1=,∴a-b=1-2+=故选:B.【题目点拨】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.“夹逼法”是估算的一般方法,也是常用方法.6、A【解题分析】

根据众数与中位数的定义分别进行解答即可.【题目详解】由于共有7个数据,则中位数为第4个数据,即中位数为7,

这组数据中出现次数最多的是7分,一共出现了3次,则众数为7,

故选:A.【题目点拨】考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.7、D【解题分析】

根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=-x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=t+100,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【题目详解】A、根据图①可得第24天的销售量为300件,故A正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,当x=10时,z=-10+25=15,故B正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:∴y=-+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选D.【题目点拨】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.8、D【解题分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.解:A、当x=1时,y=1.所以图象不过(1,-1),故错误;

B、∵-2<0,3>0,∴图象过一、二、四象限,故错误;

C、∵-2<0,∴y随x的增大而减小,故错误;

D、画出草图.

∵当x>时,图象在x轴下方,∴y<0,故正确.

故选D.“点睛”本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.9、D【解题分析】

根据多边形的内角和公式,列式计算即可得解.【题目详解】解:这个正八边形每个内角的度数=×(8-2)×180°=135°.故选:D【题目点拨】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.10、A【解题分析】

根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.【题目详解】由题意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故选:A.【题目点拨】本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.11、C【解题分析】

当时,应选择最后一种运算方法进行计算.【题目详解】当输入时,此时,即.故选C.【题目点拨】本题主要考查函数与图象12、C【解题分析】

利用中心对称图形与轴对称图形定义判断即可.【题目详解】解:A是中心对称图形,不是轴对称图形,故此选项不符合题意;B不是中心对称图形,是轴对称图形,故此选项不符合题意;C是中心对称图形,也是轴对称图形,故正确;D是中心对称图形,不是轴对称图形,故此选项不符合题意故选:C【题目点拨】此题考查了中心对称图形,轴对称图形,熟练掌握各自的性质是解本题的关键.二、填空题(每题4分,共24分)13、5【解题分析】

根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边,根据斜边上的中线等于斜边的一半计算斜边中长线。【题目详解】∴a-6=0,b-8=0∴a=6,b=8∴∴斜边上中线的长为5故答案为:5【题目点拨】本题考查了直角三角形中勾股定理,斜边上的中线等于斜边的一半的性质,本题中正确运用非负数的性质是解题关键。14、【解题分析】

通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【题目详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为,故答案为.【题目点拨】本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.15、3【解题分析】

由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【题目详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故答案是:3.【题目点拨】考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16、y=-2x+1【解题分析】根据上下平移时只需让b的值加减即可,进而得出答案即可.解:原直线的k=-2,b=0;向上平移1个单位得到了新直线,

那么新直线的k=-2,b=0+1=1.

故新直线的解析式为:y=-2x+1.

故答案为y=-2x+1.“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.17、1【解题分析】

将a+b、ab的值代入计算可得.【题目详解】解:当a+b=4,ab=2时,===1,故答案为:1.【题目点拨】本题主要考查分式的加减法,解题的关键是掌握整体代入思想的运用及分式加减运算法则、完全平方公式.18、2+.【解题分析】

先由三角形中位线定理得出PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,再根据平行线的性质得出∠MPD=∠DBC,∠DPN=∠CDB,可证∠MPN=90°,利用勾股定理求出MN==,进而得到△PMN的周长.【题目详解】∵点M,P,N分别是DE,BD,AB的中点,AD=BE=2,∴PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,∴∠MPD=∠DBC,∠DPN=∠CDB,∴∠MPD+∠DPN=∠DBC+∠CDB=180°﹣∠C=90°,即∠MPN=90°,∴MN==,∴△PMN的周长=2+.故答案为2+.【题目点拨】本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.也考查了平行线的性质,勾股定理,三角形内角和定理.求出PM=PN=1,MN=是解题的关键.三、解答题(共78分)19、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【解题分析】

(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;

(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.【题目详解】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤1.设总花费为y元,由题意可得,y=50a+70(50-a)=-20a+2.∵-20<0,∴y随x的增大而减小,∴a取最大值1时,y的值最小,此时50-a=3.答:这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【题目点拨】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是根据题意列出方程.20、(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0);(2)采用方案一电话计费方式比较合算.【解题分析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;

(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.试题解析:(1)根据题意知,方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0).(2)当x=300时,方案一的费用y=15+0.2×300=75(元),方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键.21、七边形.【解题分析】分析:多边形的内角和定理为(n-2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.详解:根据题意可得:解得:点睛:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.明白这两个公式是解题的关键.22、;;;不超过;超过而不超过;超过.【解题分析】

(1)根据表格写出函数的解析式,注意分段表示函数的解析式.(2)根据函数的解析数求解的交点,进而可得最省钱的取值范围.【题目详解】解:根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;解得所以当不超过时,选择方式最省钱同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱解得所以当超过而不超过,选择方式B最省钱根据前面两问可得当超过.选择方式C最省钱【题目点拨】本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.23、(1)见解析;(2)15,15;(3)人均年收入为15.1万元.【解题分析】

(1)从两个统计图中得到C组15万元的有20人,占调查人数的40%,可求出调查人数,进而得到D组人数,补全条形统计图,(2)根据中位数、众数的意义和求法分别求出即可,排序后求出第25、26位的两个数的平均数即为中位数,出现次数最多的数是众数,(3)利用平均数的计算公式进行计算.【题目详解】解:(1)20÷40%=50人,50-3-11-20-2=14人,补全条形统计图如图所示:(2)员工年收入在15万元出现次数最多是20次,因此众数是15万,调查50人的收入从小到大排列后处在第25、26位的数据都是15万,因此中位数是15万,(3)=15.1万元,答:该公司员工人均年收入约为15.1万元.【题目点拨】本题考查条形统计图、扇形统计图的制作方法、平均数、中位数、众数的意义,理解统计图中各个数据之间的关系是解决问题的关键.24、(1)点的坐标为,点的坐标为;(2)的面积为或.【解题分析】

(1)分别令x,y为0即可得出点,两点的坐标;(2)分点在轴的正半轴上时和点在轴的负半轴上时两种情况分别画图求解即可.【题目详解】解:(1)对于,当时,,解得,则点的坐标为当时,,则点的坐标为.(2)当点在轴的正半轴上时,如图①,∵,∴,∴的面积;当点在轴的负半轴上时,如图②,∵,∴.∴的面积,综上所述,的面积为或.25、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【解题分析】

(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;

(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.【题目详解】解:(1)样本的平均数为:=6150元;这组数据共有26个,第13、14个数据分别是300

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论