2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题含解析_第1页
2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题含解析_第2页
2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题含解析_第3页
2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题含解析_第4页
2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省湛江市三校联考八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将点向左平移4个单位长度得到点B,则点B坐标为()A. B. C. D.2.如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD3.已知在RtΔABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B. C. D.54.关于反比例函数y=的下列说法正确的是()①该函数的图象在第二、四象限;②A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;③当x>2时,则y>-2;④若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.A.①③ B.①④ C.②③ D.②④5.如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)()A.10cm B.12m C.14cm D.15cm6.芝麻的用途广泛,经测算,一粒芝麻约有0.00000201千克.数据0.00000201用科学记数法表示为()A. B. C. D.7.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.28.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠39.下列式子中,属于分式的是()A.12 B.2x C.59-x10.下列二次根式中属于最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.12.苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.13.如图,直线经过点和点,直线经过点,则不等式组的解集是______.14.函数y=2x和y=ax+4的图象相交于点A(m,3),则根据图象可得关于x,y的方程组的解是_____________.15.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=_____.16.如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.17.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.18.反比例函数,在同一直角坐标系中的图象如图所示,则的面积为_____.(用含有、代数式表示)三、解答题(共66分)19.(10分)已知一次函数的图象过点,且与一次函数的图象相交于点.(1)求点的坐标和函数的解析式;(2)在平面直角坐标系中画出,的函数图象;(3)结合你所画的函数图象,直接写出不等式的解集.20.(6分)如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.

(1)求直线AB的表达式和点B的坐标;

(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①当

时,求点P的坐标;②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.21.(6分)某市某水果批发市场某批发商原计划以每千克10元的单价对外批发销售某种水果.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.(1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该水果,因数量较多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.22.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:(1)填空:a=,b=,c=;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.23.(8分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.24.(8分)计算:÷25.(10分)某文具店从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)70100售价(元/台)90140该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?26.(10分)如图,在中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD;(2)若四边形AEDF的周长为24,,求AB的长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】【分析】将点的横坐标减4即可.【题目详解】将点向左平移4个单位长度得到点B,则点B坐标为,即(-5,2)故选D【题目点拨】本题考核知识点:用坐标表示点的平移.解题关键点:理解平移的规律.2、B【解题分析】

由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【题目详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.【题目点拨】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.3、C【解题分析】

由题意可知AB为直角边,由勾股定理可以求的.【题目详解】AB=,所以答案选择C项.【题目点拨】本题考查了直角三角形中勾股定理的运用,熟悉掌握概念是解决本题的关键.4、B【解题分析】【分析】根据反比例函数的图象与性质逐一进行判断即可得.【题目详解】①k=-4<0,图象在二、四象限,故①正确;②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;④联立,则有,整理得:x2+bx+4=0,因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,所以-4<b<4,故选B.【题目点拨】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.5、D【解题分析】

要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【题目详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB==15厘米.故选:D.【题目点拨】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.6、C【解题分析】

根据科学记数法的概念:科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),即可解题.【题目详解】解:根据科学记数法的记法,可得0.00000201=故答案为C.【题目点拨】此题主要考查科学记数法,熟练运用,即可解题.7、B【解题分析】

分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【题目详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【题目点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8、D【解题分析】

分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.【题目详解】若分式有意义,则x-3≠0,x≠3故选:D【题目点拨】本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.9、C【解题分析】

根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【题目详解】解:A、12B、2x的不含分母,因此它们是整式,而不是分式.故本选项错误;C、59-xD、x3故选:C.【题目点拨】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.10、A【解题分析】

利用最简二次根式定义判断即可.【题目详解】A、,是最简二次根式,符合题意;B、,不是最简二次根式,不符合题意;C、,不是最简二次根式,不合题意;D、,,不是最简二次根式,不合题意.故选A.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、4cm【解题分析】

先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【题目详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=AD=×8=4cm,故答案为:4cm.【题目点拨】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.12、32【解题分析】

根据极差的定义进行求解即可得答案.【题目详解】这组数据的最大值是36,最小值是25,这组数据的极差是:36﹣25=1(℃),故答案为1.【题目点拨】本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.13、【解题分析】

解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【题目详解】解:根据题意得到y=kx+b与y=2x交点为A(-1,-2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(-2,0),此时自变量x的取值范围,是-2<x<-1.即不等式2x<kx+b<0的解集为:-2<x<-1.故答案为:-2<x<-1.【题目点拨】本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.14、【解题分析】试题解析:∵A点在直线y=2x上,∴3=2m,解得∴A点坐标为∵y=2x,y=ax+4,∴方程组的解即为两函数图象的交点坐标,∴方程组的解为故答案为15、40°【解题分析】

首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【题目详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故答案为40°.【题目点拨】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.16、【解题分析】

根据矩形的性质得到OA=OC=OB=OD,可得出结果.【题目详解】解:假如平行四边形ABCD是矩形,

∴OA=OC=OB=OD,

∵OA=3,∴BD=2OB=1.

故答案为:1.【题目点拨】本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.17、【解题分析】试题分析:∵AB=12,BC=1,∴AD=1.∴.根据折叠可得:AD=A′D=1,∴A′B=13-1=2.设AE=x,则A′E=x,BE=12-x,在Rt△A′EB中:,解得:.18、【解题分析】【分析】设A(m,n),则有mn=k1,再根据矩形的性质可求得点N(,n),点M(m,),继而可得AN=m-,AM=n-,再根据三角形面积公式即可得答案.【题目详解】如图,设A(m,n),则有mn=k1,由图可知点N坐标为(,n),点M(m,),∴AN=m-,AM=n-,∴S△AMN=AM•AN====,故答案为.【题目点拨】本题考查了反比例函数图象上的点的坐标特征、三角形面积的计算,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.三、解答题(共66分)19、(1),;(2)见解析;(3).【解题分析】

(1)将P(2,m)代入y2=x+1,求出m=3,再把(2,3),(0,-2)代入求出k,b的值即可;(2)找出两点画出直线即可;(3)根据画出的函数图象求解即可.【题目详解】(1)把点代入得,,∴,把,代入得,,;(2)经过点,作直线,即为的图象,经过点,作直线,即为的图象,如图所示:(3)由图象知,不等式的解集为:.【题目点拨】本题考查了一次函数与一元一次不等式的关系,也考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的图象与性质等知识.20、(1)(1,0);(2)①(2,3);②(3,1)【解题分析】

(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=-x+1,令y=0可求得x=1,故此可求得点B的坐标;

(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-1;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;

②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【题目详解】解:(1)∵把A(0,1)代入y=-x+b得b=1,∴直线AB的函数表达式为:y=-x+1.令y=0得:-x+1=0,解得:x=1,∴点B的坐标为(1,0);(2)①∵l垂直平分OB,

∴OE=BE=2.

∵将x=2代入y=-x+1得:y=-2+1=2.

∴点D的坐标为(2,2).

∵点P的坐标为(2,n),

∴PD=n-2.

∵S△APB=S△APD+S△BPD,

∴S△ABP=PD•OE+PD•BE=(n-2)×2+(n-2)×2=2n-1.∵S△ABP=8,∴2n-1=8,解得:n=3.∴点P的坐标为(2,3).②如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=PB,∠PCM+∠MCB=90°,∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.∵PC=BC,,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(3,1).

如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.

设点C(p,q).

∵△PBC为等腰直角三角形,PB为斜边,

∴PC=CB,∠PCM+∠MCB=90°.

∵CM⊥l,BN⊥CM,

∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.

∴∠MPC=∠NCB.

在△PCM和△CBN中,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(0,2)舍去.

综上所述点C的坐标为(3,1).【题目点拨】此题考查一次函数的综合应用,全等三角形的性质和判断,解题关键在于掌握待定系数法求一次函数的解析式、割补法求面积、三角形的面积公式,全等三角形的性质和判断,由CM=BN,PM=CN列出关于p、q的方程组.21、(1)平均每次下调的百分率是;(2)超市采购员选择方案一购买更优惠.【解题分析】

设出平均每次下调的百分率,根据从10元下调到列出一元二次方程求解即可;根据优惠方案分别求得两种方案的费用后比较即可得到结果.【题目详解】解:

设平均每次下调的百分率为x.由题意,得.解这个方程,得,不符合题意,符合题目要求的是.答:平均每次下调的百分率是.超市采购员方案一购买更优惠.理由:方案一所需费用为:元,方案二所需费用为:元.,超市采购员选择方案一购买更优惠.【题目点拨】此题主要考查了一元二次方程的应用,根据题意表示出第2次下调后价格是解题关键.22、(1)众数为15;(2)3,4,15;8;(3)月销售额定为18万,有一半左右的营业员能达到销售目标.【解题分析】

根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【题目详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【题目点拨】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.23、证明见解析【解题分析】

连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【题目详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【题目点拨】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.24、-1.【解题分析】

直接利用二次根式的混合运算法则分别化简得出答案.【题目详解】解:原式.【题目点拨】此题主要考查了二次根式的混合运算,熟悉运算法则是解题关键.25、(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解题分析】

(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论