版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄28中学2024届数学八下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.不等式3(x-2)≥x+4的解集是(
)A.x≥5 B.x≥3 C.x≤5 D.x≥-52.不列调查方式中,最合适的是()A.调查某品牌电脑的使用寿命,采用普查的方式B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式D.调查苏州地区初中学生的睡眠时间,采用普查的方式3.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为()A.0 B.1 C.2 D.44.我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是()A. B. C. D.5.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.6.下列说法中错误的是()A.四个角相等的四边形是矩形 B.四条边相等的四边形是正方形C.对角线相等的菱形是正方形 D.对角线垂直的矩形是正方形7.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是()A.7cm B.9cm C.12cm D.14cm8.下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形B.斜边和一条直角边分别对应相等的两个直角三角形全等C.三角形的中线将三角形分成面积相等的两部分D.一组对边平行另一组对边相等的四边形是平行四边形9.如图,有一高度为8m的灯塔AB,在灯光下,身高为1.6m的小亮从距离灯塔底端4.8m的点C处,沿BC方向前进3.2m到达点D处,那么他的影长()A.变长了0.8m B.变长了1.2m C.变短了0.8m D.变短了1.2m10.如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有()A.①②③④ B.②③ C.②③④ D.②④11.下列事件属于必然事件的是()A.抛掷两枚硬币,结果一正一反B.取一个实数的值为1C.取一个实数D.角平分线上的点到角的两边的距离相等12.若与互为相反数,则A. B. C. D.二、填空题(每题4分,共24分)13.若一次函数中,随的增大而减小,则的取值范围是______.14.直线y=2x+6经过点(0,a),则a=_____.15.若关于x的分式方程有增根,则k的值为__________.16.如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.17.若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.18.化简﹣的结果是_____.三、解答题(共78分)19.(8分)已知反比例函数与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时这两个函数值相等.(1)求这两个函数的解析式;(2)直接写出当x取何值时,成立.20.(8分)如图,函数与的图象交于.(1)求出,的值.(2)直接写出不等式的解集;(3)求出的面积21.(8分)我们知道:“距离地面越高,气温越低.”下表表示的是某地某时气温随高度变化而变化的情况距离地面高度012345气温201482﹣4﹣10(1)请你用关系式表示出与的关系;(2)距离地面的高空气温是多少?(3)当地某山顶当时的气温为,求此山顶与地面的高度.22.(10分)某厂为支援灾区人民,要在规定时间内加工1500顶帐篷.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,结果提前4天完成任务,求该厂原来每天加工多少顶帐篷?23.(10分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.24.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?25.(12分)(1)|﹣3|+2sin45°﹣+(﹣)﹣1(2)()÷26.计算下列各题:(1)(2)
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
去括号、移项,合并同类项,系数化成1即可.【题目详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【题目点拨】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.2、B【解题分析】
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】A.调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;C.要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;D.调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;故选B【题目点拨】此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来3、B【解题分析】①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;②一组数据的众数不只有一个,有时有好几个,故②错误;③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;④数据:2,2,3,2,2,5的众数为2,故④错误;⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.所以说法正确的个数是1个.故选B.4、C【解题分析】
根据A、B、C、D各图形结合勾股定理一一判断可得答案.【题目详解】解:A、有三个直角三角形,其面积分别为ab,ab和,还可以理解为一个直角梯形,其面积为,由图形可知:=ab+ab+,整理得:(a+b)=2ab+c,a+b+2ab=2ab+c,a+b=c能证明勾股定理;B、中间正方形的面积=c,中间正方形的面积=(a+b)-4ab=a+b,a+b=c,能证明勾股定理;C、不能利用图形面积证明勾股定理,它是对完全平方公式的说明.D、大正方形的面积=c,大正方形的面积=(b-a)+4ab=a+b,,a+b=c,能证明勾股定理;故选C.【题目点拨】本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.5、B【解题分析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【题目详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【题目点拨】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.6、B【解题分析】
根据矩形和正方形的性质和判定进行分析即可.【题目详解】A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;
B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
C、对角线相等的菱形是正方形,该说法正确,不符合题意;
D、对角线垂直的矩形是正方形,该说法正确,不符合题意.
故选B.【题目点拨】考核知识点:正方形和矩形的判定.理解定理是关键.7、A【解题分析】
根据三角形中位线定理分别求出DE、EF、FG、DG,计算即可.【题目详解】解:∵BD、CE是△ABC的中线,
∴DE=BC=2,
同理,FG=BC=2,EF=OA=1.5,DG=OA=1.5,
∴四边形DEFG的周长=DE+EF+FG+DG=7(cm),
故选:A.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、D【解题分析】
根据多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定即可依次判断.【题目详解】A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,正确;B.斜边和一条直角边分别对应相等的两个直角三角形全等,正确;C.三角形的中线将三角形分成面积相等的两部分,正确;D.一组对边平行且相等的四边形是平行四边形,故错误;故选D.【题目点拨】此题主要考查几何图形的判定与性质,解题的关键是熟知多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定.9、A【解题分析】
根据由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,所以,将数值代入求解可得CE、DF的值,可得答案。【题目详解】解:如图由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,∴,即解得:CE=1.2,DF=2∴DF-CE=2-1.2=0.8故选:A【题目点拨】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.10、C【解题分析】
利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.【题目详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△AFB≌△ADC,∴∠BAF=∠CAD,BF=CD,故②④正确;由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE故③正确;无法判断BE=CD,故①错误.故选:C.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.11、D【解题分析】
必然事件就是一定发生的事件,据此判断即可解答.【题目详解】A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;
B、x应取不等于0的数,故错误,不合题意;
C、取一个实数,故错误,不合题意;
D、正确,属于必然事件,符合题意;
故选:D.【题目点拨】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、A【解题分析】
根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.【题目详解】根据根式的性质和绝对值的性质可得:因此解得所以可得故选A.【题目点拨】本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.二、填空题(每题4分,共24分)13、【解题分析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.【题目详解】解:一次函数是常数)中随的增大而减小,,解得,故答案为:.【题目点拨】本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,14、6【解题分析】
直接将点(0,a)代入直线y=2x+6,即可得出a=6.【题目详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.【题目点拨】此题主要考查一次函数解析式的性质,熟练掌握即可得解.15、或【解题分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【题目详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或【题目点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16、1【解题分析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【题目详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.【题目点拨】本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.17、4【解题分析】
因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【题目详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4【题目点拨】解答本题的关键是确定x的值,即灵活应用中位数概念.18、﹣【解题分析】
原式通分并利用同分母分式的减法法则计算即可得到结果【题目详解】原式===故答案为:【题目点拨】此题考查分式的加减法,掌握运算法则是解题关键三、解答题(共78分)19、(1)一次函数的解析式为;反比例函数解析式为;(2)x<-2或0<x<3【解题分析】
(1)先把点(-2,-1)代入y=,求出反比例函数解析式;再把x=3代入求出y的值,把点(-2,-1)和x=3时y的值代入一次函数解析式即可求出一次函数的解析式;(2)找出反比例函数在一次函数图象上方对应的自变量的取值范围即可.【题目详解】解:∵反比例函数y=的图象经过(-2,-1),∴-1=,即m=2,∴反比例函数解析式为y=;当x=3时,y=.把(-2,-1)、(3,)代入y=kx+b,得,解得,∴一次函数的解析式为y=x-;(2)∵反比例函数y=与一次函数y=kx+b的图象交于点(-2,-1)、(3,),由图象可知:当x<-2或0<x<3时,反比例函数在一次函数图象的上方,∴当x<-2或0<x<3时,>kx+b成立.【题目点拨】本题考查了反比例函数与一次函数的交点问题,用待定系数法求一次函数及反比例函数的解析式,函数图象上点的坐标特征,数形结合思想.正确求出两个函数的解析式和画出图象是解题的关键.20、(1),;(2);(3).【解题分析】
(1)先把点坐标代入求出的值,进而可得,,再把点坐标代入可得的值;(2)根据函数图象可直接得到答案:直线在直线上方的部分且即为所求;(3)首先求出、两点坐标,进而可得的面积.【题目详解】解:(1)过.,解得:,,,的图象过,.,解得:;(2)不等式的解集为;(3)当中,时,,,中,时,,,;的面积=.【题目点拨】此题主要考查了一次函数图象上点的坐标特点,以及一次函数与不等式,关键是掌握函数图像上点的特征:函数图象经过的点必能满足解析式.21、(1);(2);(3)米.【解题分析】
(1)根据表中的数据写出函数关系式;(2)把相关数据代入函数关系式求解即可;(3)把相关数据代入函数关系式求解即可.【题目详解】(1)由表格数据可知,每升高1千米,气温下降6,可得与和函数关系式为:(2)(3)【题目点拨】本题主要考查了函数关系式及函数值,解题的关键是根据表中的数据写出函数关系式.22、原来每天加工100顶帐篷.【解题分析】试题分析:设该厂原来每天加工x顶帐篷,由题中所给数量关系可得方程,解此方程并检验即可求得所求答案.试题解析:设该厂原来每天加工x顶帐篷,由题意可得:,解得,经检验,是所列方程的解,答:原来每天加工100顶帐篷.23、(1)(20﹣2x),(12﹣2x);(2)1【解题分析】
(1)观察图形根据长宽的变化量用含x的代数式表示即可.(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.【题目详解】(1)长为(20﹣2x),宽为(12﹣2x)(2)由题意(20﹣2x)(12﹣2x)=180240-64x+4x2=1804x2-64x+60=0x2-16x+15=0(x-15)(x-1)=0解得x1=15(不合题意),x2=1∴x的取值只能是1,即x=1.【题目点拨】结合图形观察长宽的变化量,根据一元二次方程求解即可.24、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解题分析】
(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;(3)观察图(1),根据(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国多功能烹饪食物加工器市场销售策略与营销渠道研究报告
- 2024-2030年中国垃圾袋行业市场营销策略及发展前景预测报告
- 2024-2030年中国喷砼机行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国哑光厚质高弹弹性乳胶漆行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国吐根行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国医用级消毒剂行业需求潜力与应用前景预测报告
- 2024-2030年中国公路养护行业发展规划及投资模式分析报告
- 2024年出租车行业客户满意度提升合同
- 2024年工程承包合同意向书
- 2023年中国铁路人才招聘考试真题
- 二 《学习工匠事迹 领略工匠风采》(教学设计)-【中职专用】高二语文精讲课堂(高教版2023·职业模块)
- 工程项目建设程序
- 中小学生劳动教育的跨学科融合案例
- 分子结构与化学性质的关系
- 医院内肺炎预防与控制标准操作规程
- 道路(光彩工程)亮化施工投标方案(技术方案)
- 2023年房地产估价师考试完整真题及答案解析
- 第14课 推进绿色发展
- 山东省泰安市新泰市2023-2024学年五年级上学期期中语文试卷
- 《机械设计》课程思政教学案例(一等奖)
- 2023-2024学年福建省厦门市七年级上册期中语文模拟试题(附答案)
评论
0/150
提交评论