版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省武汉江汉区四校联考数学八年级第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为()A. B. C. D.2.下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限 B.y随x的增大而增大C.与x轴交于(﹣2,0) D.与y轴交于(0,﹣2)3.如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E为AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3 B.4 C.5 D.64.若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且5.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是().A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元6.下列运算中正确的是()A. B.C. D.7.如图,点A在双曲线y=4x上,点B在双曲线y=kxk≠0,AB//x轴,分别过点A、B向x轴作垂线,垂足分别为D、C.若矩形ABCDA.12 B.10 C.8 D.68.如图,已知线段AB=12,点M、N是线段AB上的两点,且AM=BN=2,点P是线段MN上的动点,分别以线段AP、BP为边在AB的同侧作正方形APDC、正方形PBFE,点G、H分别是CD、EF的中点,点O是GH的中点,当P点从M点到N点运动过程中,OM+OB的最小值是()A.10 B.12 C.2 D.129.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为()A. B. C.1 D.210.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.2 D.211.分式-11-x可变形为(A.-1x-1 B.1x-1 C.12.若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍 B.缩小为原来的C.不变 D.缩小为原来的二、填空题(每题4分,共24分)13.甲、乙两位选手各射击10次,成绩的平均数都是9.2环,方差分别是,,则____选手发挥更稳定.14.对于分式,当x______时,分式无意义;当x______时,分式的值为1.15.一个纳米粒子的直径是0.000000035米,用科学记数法表示为______米.16.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.17.如图,已知∠EAD=30°,△ADE绕点A旋转50°后能与△ABC重合,则∠BAE=_________°.18.在一次捐款活动中,某班第一小组8名同学捐款的金额单位:元如下表所示:这8名同学捐款的平均金额为______元金额元56710人数2321三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.20.(8分)先化简、再求值.,其中,.21.(8分)已知:如图,是的角平分线,于点,于点,,求证:是的中垂线.22.(10分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.23.(10分)如图,已知分别为平行四边形的边上的点,且.(1)求证:四边形是平行四边形;(2)当,且四边形是菱形,求的长.24.(10分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?25.(12分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.26.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;(3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【题目详解】如图,连接AE,因为点C关于BD的对称点为点A,所以PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为3,BE=2,∴AE==,∴PE+PC的最小值是.故选:B.【题目点拨】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.2、C【解题分析】
根据直线的图像性质即可解答.【题目详解】解:令x=0,则y=-2,故直线与y轴的交点坐标为:﹙0,-2﹚;令y=0,则x=,故直线与y轴的交点坐标为:(,0).
∵直线y=3x-2中k=3>0,b=-2<0,
∴此函数的图象经过一、三、四象限.k=3>0,y随x的增大而增大.故A,B,D正确,答案选C.【题目点拨】本题考查的是x、y轴上点的坐标特点及一次函数图象的性质,即一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数图象经过一、三、四象限.3、C【解题分析】
根据勾股定理先求出AB的长度,利用角关系得出等腰△ACD及等腰△BCD,得出CD=BD=AD=12AB=【题目详解】如图∵AC=8,BC=6,∠ACB=90°∴AB=A∵点E为AC的中点,DE⊥AC于E∴ED垂直平分AC∴AD=CD∴∠1=∠2∵∠ACB=90°∴∠1+∠4=∠2+∠3=90°∴∠3=∠4∴CD=BD∴CD=BD=AD=12AB=故选:C【题目点拨】本题考查了勾股定理及等腰三角形的性质和判定,掌握由角关系推出线关系是解题的关键.4、D【解题分析】
根据一元二次方程有两个不相等的实数根,可得进而计算k的范围即可.【题目详解】解:根据一元二次方程有两个不相等的实数根可得计算可得又根据要使方程为一元二次方程,则必须所以可得:且故选D.【题目点拨】本题主要考查根与系数的关系,根据一元二次方程有两个不相等的实根可得,;有两个相等的实根则,在实数范围内无根,则.5、C【解题分析】根据折线图1~2月以及2~3月的倾斜程度可以得出:2~3月份利润的增长快于1~2月份利润的增长;故A选项错误,1~4月份利润的极差为:130-100=30,1~5月份利润的极差为:130-100=30;故B选项错误;根据只有130出现次数最多,∴130万元是众数,故C选项正确;1~5月份利润的中位数是:从小到大排列后115万元位于最中间,故D选项错误6、B【解题分析】
根据二次根式的乘除法则求出每个式子的值,再判断即可.【题目详解】解:A.==42,故本选项不符合题意;B.,故本选项,符合题意;C.,故本选项不符合题意;D.=3,故本选项不符合题意;故选:B.【题目点拨】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.7、A【解题分析】
首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.【题目详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4∴矩形EODA的面积为:4,∵矩形ABCD的面积是8,∴矩形EOCB的面积为:4+8=1,则k的值为:xy=k=1.故选A.【题目点拨】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.8、C【解题分析】
作点M关于直线XY的对称点M′,连接BM′,与XY交于点O,由轴对称性质可知,此时OM+OB=BM′最小,根据勾股定理即可求出BM'的值.【题目详解】解:作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.O′O″⊥A于O″B.GL⊥AB于L,HT⊥AB于T.由轴对称性质可知,此时OM+OB=BM′最小(O′O″=(GL+HT)=6),在Rt△BMM′中,MM′=2O′O″=2×6=12,BM=10,由勾股定理得:BM′==2,∴OM+OB的最小值为2,故选C.【题目点拨】本题考查了正方形的性质和轴对称及勾股定理等知识的综合应用.综合运用这些知识是解决本题的关键.9、A【解题分析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故选A.10、B【解题分析】
先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.【题目详解】由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选B.【题目点拨】本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.11、B【解题分析】
根据分式的基本性质进行变形即可.【题目详解】-11-x=故选B.【题目点拨】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.12、D【解题分析】
根据分式的基本性质,可得答案【题目详解】将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的故选D.【题目点拨】本题考查分式的基本性质,掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、甲【解题分析】
根据方差越大波动越大越不稳定,作出判断即可.【题目详解】解:∵S甲2=0.015,S乙2=0.025,
∴S乙2>S甲2,
∴成绩最稳定的是甲.
故答案为:甲.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、【解题分析】
根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【题目详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.【题目点拨】本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.15、3.5×10-1.【解题分析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000
000
035=3.5×10-1.
故答案为:3.5×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.16、1.2.【解题分析】
根据实物与影子的比相等可得小芳的影长.【题目详解】∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
∴小芳高1.5m,
设小芳的影长为xm,
∴1.5:x=1.8:2.1,
解得x=1.2,
小芳的影长为1.2m.【题目点拨】本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.17、20【解题分析】
利用旋转的性质得出∠DAB=50°,进而得出∠BAE的度数.【题目详解】解:∵∠EAD=30°,△ADE绕着点A旋转50°后能与△ABC重合,∴∠DAB=50°,则∠BAE=∠DAB-∠DAE=50°-30°=20°.故答案为:20.【题目点拨】此题主要考查了旋转的性质,得出旋转角∠DAB的度数是解题关键.18、6.5【解题分析】
根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【题目详解】这8名同学捐款的平均金额为元,故答案为:.【题目点拨】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.三、解答题(共78分)19、(1)见解析;(2)当t=或12时,△DEF为直角三角形.【解题分析】
(1)根据三角形内角和定理得到∠C=30°,根据直角三角形的性质求出DF,得到DF=AE,根据平行四边形的判定定理证明;(2)分∠EDF=90°、∠DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.【题目详解】(1)∵∠B=90°,∠A=60°,∴∠C=30°,∴AB=AC=30,由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,∴DF=CD=2t,∴DF=AE,∵DF∥AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE∥BC,∴∠ADE=∠C=30°,∴AD=2AE,即60﹣4t=2t×2,解得,t=,当∠DEF=90°时,如图②,∵AD∥EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60﹣4t),解得,t=12,综上所述,当t=或12时,△DEF为直角三角形.【题目点拨】本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.20、;【解题分析】
根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.【题目详解】解:当,时【题目点拨】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.21、见解析.【解题分析】
由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt△CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【题目详解】解:是的角平分线,,,,,在和中,,,,,是的角平分线,是的中垂线.【题目点拨】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.22、(1)见解析;(2)AE=;(3)(3),理由见解析.【解题分析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE=GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到,可知∥,再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.【题目详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=则AE=GE=易得△GBE是等腰直角三角形∴BG=EG=∴AB=BC=易得∠DHF=30°∴HD=2DF=,HF=∴BF=BH+HF=∵Rt△AMC≌Rt△AND(HL)∴易得CF=DF=∴BC=BF-CF=∴∴∴AE=(3);理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,∴,∴∥,∴∵∴∴,∵∴≌(SAS)∴∴∴是等腰直角三角形∴∴∴【题目点拨】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.23、(1)详见解析;(2)10【解题分析】
(1)首先由已知证明AM∥NC,BN=DM,推出四边形AMCN是平行四边形.(2)由已知先证明AN=BN,即BN=AN=CN,从而求出BN的长.【题目详解】(1)证明:四边形是平行四边形,又.即,,四边形是平行四边形;(2)四边形是菱形,,又,即,,,.【题目点拨】此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.24、50.【解题分析】
解:设该厂原来每天加工x个零件,由题意得:,解得x=50,经检验:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年办公照明项目筹资方案
- 【电信终端产业协会】2024年终端智能化分级研究报告
- 国际物流题库(含参考答案)
- 养老院老人生活娱乐活动组织人员行为规范制度
- 养老院老人健康档案管理制度
- 《动物简笔画的步骤》课件
- 《电子技术基础绪论》课件
- 2024年土地承包经营权流转与农业品牌建设合同范本3篇
- 提成协议书(2篇)
- 2024年版:高级管理职位聘任协议
- 临时用电配电箱日常检查表
- 录井技术服务方案与技术措施
- 2022年二年级上册语文复习计划
- 小学语文人教课标版(部编)三年级下册习作:我的植物朋友 1
- 西师大版六年级数学上册《比和按比例分配的整理与复习》课件
- 房屋租赁合同终止协议书格式(3篇)
- PPT成功的秘诀——勤奋
- 建设工程监理概论(PPT)
- 土地整治业务培训
- 澳大利亚教育质量保障框架ppt课件
- 热力学第四章热力学第二定律(me)(1)
评论
0/150
提交评论