




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京市第十八中学数学八下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若点在第四象限,则的取值范围是()A. B. C. D.2.下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形B.斜边和一条直角边分别对应相等的两个直角三角形全等C.三角形的中线将三角形分成面积相等的两部分D.一组对边平行另一组对边相等的四边形是平行四边形3.已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是()A.平行四边形 B.矩形 C.菱形 D.正方形4.正方形的一条对角线之长为4,则此正方形的面积是()A.16 B.4 C.8 D.85.如图,在正方形ABCD中,AB=10,点E、F是正方形内两点,AE=FC=6,BE=DF=8,则EF的长为()A. B. C. D.36.平行四边形不一定具有的性质是()A.对角线互相垂直 B.对边平行且相等 C.对角线互相平分 D.对角相等7.将一次函数y=4x的图象向上平移3个单位长度,得到图象对应的函数解析式为()A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-38.如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为()A.1 B.2 C.3 D.49.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4 B.5 C.6 D.710.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以 B.甲可以,乙不可以C.甲不可以,乙可以 D.甲、乙都不可以11.如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米 B.4米 C.8米 D.8米12.以下列各组数为一个三角形的三边长,能构成直角三角形的是().A.2,3,4 B.4,6,5 C.14,13,12 D.7,25,24二、填空题(每题4分,共24分)13.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.14.如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.15.已知点P(-1,m),Q(-2,n)都在反比例函数的图像上,则m____n(填“>”或“<”或“=”).16.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.17.若一直角三角形的两直角边长为,1,则斜边长为_____.18.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.三、解答题(共78分)19.(8分)如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,⑴求证:四边形AECF是菱形.⑵若AB=2,BF=1,求四边形AECF的面积.20.(8分)完成下列运算(1)计算:(2)计算:(3)计算:21.(8分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.22.(10分)(1)分解因式:(2)解不等式组23.(10分)如图,在正方形中,,分别是,上两个点,.(1)如图1,与的关系是________;(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;(3)如图2,当点是的中点时,求证:.24.(10分)如图,在矩形ABCD中,AB16,BC18,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在点B'处.(I)若AE0时,且点B'恰好落在AD边上,请直接写出DB'的长;(II)若AE3时,且△CDB'是以DB'为腰的等腰三角形,试求DB'的长;(III)若AE8时,且点B'落在矩形内部(不含边长),试直接写出DB'的取值范围.25.(12分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图1中,“7分”所在扇形的圆心角等于.(2)请你将图2的条形统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.26.(1)分解因式:;(2)化简:.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.【题目详解】由题意得2m-1<0,∴.故选D.【题目点拨】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、D【解题分析】
根据多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定即可依次判断.【题目详解】A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,正确;B.斜边和一条直角边分别对应相等的两个直角三角形全等,正确;C.三角形的中线将三角形分成面积相等的两部分,正确;D.一组对边平行且相等的四边形是平行四边形,故错误;故选D.【题目点拨】此题主要考查几何图形的判定与性质,解题的关键是熟知多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定.3、B【解题分析】
本题没有图,需要先画出图形,如图所示
连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.【题目详解】解:四边形EFGH的形状为矩形,
理由如下:
连接AC、BD交于O,
∵E、F、G、H分别是AB、AD、CD、BC的中点,
∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,
∴EF∥HG,EH∥FG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∵EF∥BD,EH∥AC,
∴EF⊥EH,
∴∠FEH=90°,
∴平行四边形EFGH是矩形,
故答案为:B.【题目点拨】本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.4、C【解题分析】
根据正方形的面积等于对角线乘积的一半列式计算即可得解.【题目详解】∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8,故选C.【题目点拨】本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.5、B【解题分析】
延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=8,由AE=6,得出EG=2,同理得出GF=2,再根据勾股定理得出EF的长.【题目详解】延长AE交DF于G,如图:∵AB=10,AE=6,BE=8,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=8,DG=AE=6,∴EG=2,同理可得:GF=2,∴EF=,故选B.【题目点拨】此题考查正方形的性质、勾股定理,解题关键在于作辅助线.6、A【解题分析】
结合平行四边形的性质即可判定。【题目详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【题目点拨】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。7、C【解题分析】
根据一次函数的平移特点即可求解.【题目详解】∵将一次函数y=4x的图象向上平移3个单位长度,∴得到图象对应的函数解析式为y=4x+3故选C.【题目点拨】此题主要考查一次函数的图像,解题的关键是熟知一次函数的平移特点.8、B【解题分析】
只要证明CD=CE=4,根据BE=BC-EC计算即可.【题目详解】∵四边形ABCD是平行四边形,∴AB=CD=4,AD=BC=6,∵AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠DEC=∠CDE,∴DC=CE=AB=4,∴BE=BC-CE=6-4=2,故选B.【题目点拨】本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.9、C【解题分析】分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.
选择①与②:∵AB∥CD,
∴∠BAO=∠DCO,∠ABO=∠CDO,
在△AOB与△COD中,,
∴△AOB≌△COD,
∴AB=CD,
∴四边形ABCD为平行四边形.①与③(根据一组对边平行且相等)
①与④:∵∠BAD=∠DCB
∴AD∥BC
又AB∥DC
根据两组对边分别平行可推出四边形ABCD为平行四边形.
①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;②与⑤:∵AD∥BC
OA=OC
∴△AOD≌△COB
故AD=BC,四边形ABCD为平行四边形.
④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.共有6种可能.故选C.点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.10、A【解题分析】
直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【题目详解】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【题目点拨】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.11、D【解题分析】分析:由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,将问题转化为求OA;根据∠BAD=60°得到△ABD为等边三角形,即可求出OB的长,再利用勾股定理求出OA即可求解.详解:设AC与BD交于点O.∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.∵∠BAD=60°,AB=AD,∴△ABD为等边三角形,∴BD=AB=8米,∴OD=OB=4米.在Rt△AOB中,根据勾股定理得:OA=4(米),∴AC=2OA=8米.故选D.点睛:本题主要考查的是勾股定理,菱形的性质以及等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.12、D【解题分析】分析:根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.解答:解:∵72+242=49+576=625=1.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选D.二、填空题(每题4分,共24分)13、1【解题分析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【题目详解】设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:5x-2(20-x)≥60,解得:x≥14,∵x为整数,∴x的最小值为1.故答案是:1.【题目点拨】考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.14、6a【解题分析】
根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【题目详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.【题目点拨】本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.15、>【解题分析】
根据反比例函数的图像特点即可求解.【题目详解】∵点P(-1,m),Q(-2,n)都在反比例函数的图像上,又-1>-2,反比例函数在x<0时,y随x的增大而增大,∴m>n【题目点拨】此题主要考查反比例函数的图像,解题的关键是熟知反比例函数的图像特点.16、-2【解题分析】
由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.【题目详解】解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,解得:m=﹣2,故答案为:﹣2.【题目点拨】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.17、1【解题分析】
根据勾股定理计算,得到答案.【题目详解】解:斜边长==1,故答案为:1.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.18、4.【解题分析】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为4.考点:菱形的性质;线段垂直平分线的性质.三、解答题(共78分)19、(2)证明见解析;(2)四边形AECF的面积为4﹣2.【解题分析】试题分析:(2)根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果;(2)根据正方形的边长、对角线,可得直角三角形,根据勾股定理,可得AC、EF的长,根据菱形的面积公式,可得答案.试题解析:(2)证明:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABF=∠CBF=∠CDE=∠ADE=45°.∵BF=DE,∴△ABF≌△CBF≌△DCE≌△DAE(SAS).AF=CF=CE=AE∴四边形AECF是菱形;(2)∵AB=2,∴AC=BD=∴OA=OB==2.∵BF=2,∴OF=OB-BF=2-2.∴S四边形AECF=AC•EF=.考点:2.正方形的性质;2.菱形的判定与性质.20、(1)(2)1;(3)【解题分析】
(1)先把二次根式化简,然后合并即可;(2)根据二次根式的除法法则运算;(3)利用乘法公式展开,然后合并即可.【题目详解】解:(1)原式=6﹣4+=2+;(2)原式==4﹣3=1;(3)原式【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、证明见解析【解题分析】分析:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明.详解:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.点睛:本题考查了平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,熟记各性质与判定方法是解题的关键.22、(1);(2).【解题分析】
(1)根据平方差公式因式分解即可;(2)根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集即可.【题目详解】解:(1)原式.(2)解不等式①,得,解不等式②,得.所以,原不等式组的解集是.【题目点拨】此题考查的是因式分解和解不等式组,掌握利用平方差公式因式分解和不等式的基本性质是解决此题的关键.23、(1),;(2)成立,证明见解析;(3)见解析【解题分析】
(1)因为,ABCD是正方形,所以AE=DF,可证△ADF≌BAE,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,可得∠DAF+∠AEB=90°,可得;(2)成立,因为E为AD中点,所以AE=DF,可证△ABE≌△DAF,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,得到∠DAF+∠AEB=90°,可得;(3)如解图,取AB中点H,连接CH交BG于点M,由(2)得,可证,所以MH为△AGB的中位线,所以M为BG中点,所以CM为BG垂直平分线,所以.【题目详解】解:(1)AF=BE且AF⊥BE.理由如下:证明:∵,ABCD为正方形AE=AD-DE,DF=DC-CF∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF
∴AF=BE,∠AEB=∠AFD
∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE;(2)成立,AF=BE且AF⊥BE.理由如下:证明:∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD
∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF
∴AF=BE,∠AEB=∠AFD
∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(3)取AB中点H,连接CH交BG于点M∵H、F分别为AB、DC中点,AB∥CD,∴AH=CF,∴四边形AHCF是平行四边形,∴AF∥CH,又∵由(2)得,∴,∵AF∥CH,H为AB中点,∴M为BG中点,∵M为BG中点,且,∴CH垂直平分BG,∴CG=CB.【题目点拨】本题考查平行四边形的判定和性质,正方形的性质以及全等三角形的判定和性质,灵活应用全等三角形的性质是解题关键.24、(I);(II)16或10;(III).【解题分析】
(I)根据已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 熟食摊位租赁合同范本
- 家具导购聘用合同范本
- 知识产权融资在中小企业中的推广应用
- 病句修改题强化训+语序不当
- 2025年甘肃省金昌市单招职业适应性测试题库完美版
- 正式购房合同范本
- 2025年湖北科技职业学院单招职业适应性测试题库完整
- 园林收购合同范本
- 汽车咨询合同范本
- 人类面临的主要环境问题(+教学设计) 高一地理湘教版(2019)必修二
- 2020年8月自考00808商法试题及答案含解析
- 职业院校技能大赛(中职组)植物病虫害防治赛项考试题库及答案
- GB/T 22919.10-2024水产配合饲料第10部分:罗非鱼配合饲料
- 2024年注册消防工程师题库附完整答案【全优】
- 部编小学语文四年级下册第2单元作业设计
- 128个自然拼读口诀表打印
- 中医护理的基本特点与护理原则-
- 认识颈动脉斑块护理课件
- 家庭教育学整套课件
- 智慧树知到《医学统计学》章节测试答案
- 木工安全教育培训试题(附答案)
评论
0/150
提交评论