2024届广东省惠州一中学数学八下期末质量检测模拟试题含解析_第1页
2024届广东省惠州一中学数学八下期末质量检测模拟试题含解析_第2页
2024届广东省惠州一中学数学八下期末质量检测模拟试题含解析_第3页
2024届广东省惠州一中学数学八下期末质量检测模拟试题含解析_第4页
2024届广东省惠州一中学数学八下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省惠州一中学数学八下期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列二次根式化简的结果正确的是()A. B. C. D.2.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或63.如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为()A.2 B.4 C.6 D.84.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.135.一组数中,无理数的个数是()A.2 B.3 C.4 D.56.如果一个多边形的内角和是它外角和的倍,那么这个多边形的边数为()A. B. C. D.7.下列各式中,是最简二次根式的是()A. B. C. D.8.关于反比例函数y=的下列说法正确的是()①该函数的图象在第二、四象限;②A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;③当x>2时,则y>-2;④若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.A.①③ B.①④ C.②③ D.②④9.下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C.三角形的中线将三角形分成面积相等的两部分D.一组对边平行另一组对边相等的四边形是平行四边形10.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.11.化简二次根式的结果为()A.﹣2a B.2a C.2a D.﹣2a12.在实数范围内有意义,则应满足的条件是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.14.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)15.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________.(填“>”,“<”或“=”)16.经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.17.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.18.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.三、解答题(共78分)19.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,到达目的地后停止,设慢车行驶时间为小时,两车之间的距离为千米,两者的关系如图所示,根据图象探究:(1)看图填空:两车出发小时,两车相遇;(2)求快车和慢车的速度;(3)求线段所表示的与的关系式,并求两车行驶小时两车相距多少千米.20.(8分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点在上,点在的延长线上,求证:=ME,⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM=;若点E在直线BC上,则DM=.21.(8分)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.22.(10分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.23.(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.24.(10分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).(1)画出△ABC向下平移5个单位后的△A1B1C1;(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.25.(12分)(1)计算:()﹣()+2(2)已知:x=﹣1,求代数式x2+2x﹣2的值.26.某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.(1)计算这5只生猪的平均重量;(2)估计这200只生猪能卖多少钱?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.【题目详解】解:,故A错误;,故B正确;,故C错误;,故D错误.故选:.【题目点拨】本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.2、D【解题分析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【题目点拨】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.3、D【解题分析】

根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.【题目详解】解:∵点,∴,则,由题意得,,整理得,,∵点在反比例函数上,∴,解得,,则,故选:D.【题目点拨】本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.4、B【解题分析】

根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【题目详解】解:∵四边形ABCD是平行四边形,

∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,

∴∠EAO=∠FCO,

在△AEO和△CFO中,,

∴△AEO≌△CFO(ASA),

∴AE=CF,OE=OF=2,

∴DE+CF=DE+AE=AD=6,

∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.

故选B.【题目点拨】本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.5、B【解题分析】

先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.【题目详解】因为,所以是无理数,共有3个,故答案选B.【题目点拨】本题考查的是无理数的定义,能够将二次根式化简是解题的关键.6、B【解题分析】

根据多边形的内角和公式(n−2)⋅110°与外角和定理列出方程,然后求解即可.【题目详解】解:设这个多边形是n边形,

根据题意得,(n−2)⋅110°=3×360°,

解得n=1.

故选B.【题目点拨】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.7、B【解题分析】

根据最简二次根式的定义即可求解.【题目详解】A.,分母出现根号,故不是最简二次根式;B.为最简二次根式;C.=2,故不是最简二次根式;D.,根号内含有小数,故不是最简二次根式,故选B.【题目点拨】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.8、B【解题分析】【分析】根据反比例函数的图象与性质逐一进行判断即可得.【题目详解】①k=-4<0,图象在二、四象限,故①正确;②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;④联立,则有,整理得:x2+bx+4=0,因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,所以-4<b<4,故选B.【题目点拨】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.9、D【解题分析】

根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.【题目详解】解:A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形,所以A选项为真命题;B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;C.三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;D.一组对边平行且相等的四边形是平行四边形,所以D选项为假命题.故选D.【题目点拨】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10、C【解题分析】

根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【题目详解】解:A、x2+2x-1≠(x-1)2,故本选项错误;

B、右边不是整式积的形式,不是因式分解,故本选项错误;

C、符合因式分解的定义,故本选项正确;

D、右边不是整式积的形式,不是因式分解,故本选项错误.

故选:C.【题目点拨】本题考查多项式的因式分解,解题的关键是正确理解因式分解的意义.11、A【解题分析】

利用根式化简即可解答.【题目详解】解:∵﹣8a3≥0,∴a≤0∴=2|a|=﹣2a故选A.【题目点拨】本题考查二次根式性质与化简,熟悉掌握运算法则是解题关键.12、D【解题分析】

根据二次根式有意义的条件解答即可.【题目详解】解:由题意得:x+1≥0,解得x≥-1,故答案为D.【题目点拨】本题考查了二次根式有意义的条件,即牢记二次根式有意义的条件为被开方数大于等于零是解答本题的关键.二、填空题(每题4分,共24分)13、36°【解题分析】∵多边形ABCDE是正五边形,∴∠BAE==108°,∴∠1=∠2=(180°-∠BAE),即2∠1=180°-108°,∴∠1=36°.14、=<【解题分析】

根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【题目详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【题目点拨】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.15、<【解题分析】

根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】解:∵甲的成绩比乙的成绩稳定,∴S2甲<S2乙,故答案为:<.【题目点拨】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、1.【解题分析】

从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答【题目详解】∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=1°,故答案为:1.【题目点拨】此题考查正多边形的性质和外角,解题关键在于求出是几边形17、【解题分析】

先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【题目详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,

∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,

∴AB=2EF,DC=DF+CF=8,

作DH⊥BC于H,

∵AD∥BC,∠B=90°,

∴四边形ABHD为矩形,

∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,

在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.18、1.【解题分析】试题分析:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240,解得x1=1,x2=﹣2(不合题意,舍去),答:这块铁片的宽为1cm.故答案为1.考点:一元二次方程的应用.三、解答题(共78分)19、(1)两车出发1.8小时相遇;(2)快车速度为;慢车速度为;(3),【解题分析】

(1)根据图象可知两车出发1.8小时相遇;(2)根据图象和题意可以分别求出慢车和快车的速度;(3)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,再把x=6代入求出对应的y值即可得出两车行驶6小时两车相距多少千米.【题目详解】(1)由图知:两车出发1.8小时相遇.(2)快车8小时到达,慢车12小时到达,故:快车速度为慢车速度为(3)由题可得,点C是快车刚到达乙地,∵点C的横坐标是8,∴纵坐标是:100×8=800,即点C的坐标为(8,800).设线段BC对应的函数解析式为y=kx+b,∵点B(1.8,0),点C(8,800),∴,解得,∴线段BC所表示的y与x的函数关系式是y=250x-1200(1.8≤x≤8).当x=6时,y=250×6-1200=300,即两车行驶6小时两车相距300千米.【题目点拨】本题考查一次函数的应用,路程、速度与时间关系的应用,待定系数法求一次函数的解析式以及求函数值,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【解题分析】

(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;

(2)结论不变,证明方法类似;

(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【题目详解】解:(1)△AMN≌△FME,等腰直角.如图1中,延长EM交AD于H.

∵四边形ABCD是正方形,四边形EFGC是正方形,

∴,,

∴,

∴,

∵,,

∴△AMH≌△FME,

∴,,

∴,

∵,

∴DM⊥EM,DM=ME.(2)结论仍成立.如图,延长EM交DA的延长线于点H,∵四边形ABCD与四边形CEFG都是正方形,∴,,∴AD∥EF,∴.∵,,∴△AMF≌△FME(ASA),…∴,,∴.在△DHE中,,,,∴,DM⊥EM.(3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:∵四边形ABCD与四边形CEFG都是正方形,且点E在BC上∴AB//EF,∴,∵M为AF中点,∴AM=MF∵在三角形AHM与三角形EFM中:,∴△AMH≌△FME(ASA),∴,,∴.∵在三角形AHD与三角形DCE中:,∴△AHD≌△DCE(SAS),∴,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE中,,,,∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中,所以【题目点拨】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.21、a≥﹣,且a≠.【解题分析】分析:分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据x为非负数求出a的范围即可.本题解析:分式方程去分母得:2x=3a﹣4x+4,解得:x=,根据题意得:≥0,且≠1,解得:a≥﹣,且a≠.22、(1)(a−3)(a−1);(2)当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【解题分析】

(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.【题目详解】解:(1)a2−8a+11=(a2−8a+16)−1=(a−4)2−12=(a−3)(a−1),故答案为:(a−3)(a−1);(2)∵a2+b2−14a−8b+61=0,∴(a2−14a+49)+(b2−8b+16)=0,∴(a−7)2+(b−4)2=0,∴a−7=0,b−4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=1,7,9,当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)−2x2−4x+3,=−2(x2+2x+1−1)+3,=−2(x+1)2+1,∴当x=−1时,多项式−2x2−4x+3有最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论