2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题含解析_第1页
2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题含解析_第2页
2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题含解析_第3页
2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题含解析_第4页
2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南望城金海学校八年级数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个 B.2个 C.3个 D.4个2.如果,那么yx的算术平方根是()A.2 B.1 C.-1 D.±13.下列式子为最简二次根式的是()A. B. C. D.4.为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)11.21.5节水户数651520A.1 B.1.1 C.1.13 D.1.25.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A.10 B.16 C.20 D.366.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.7.如果代数式能分解成形式,那么k的值为()A.9 B.﹣18 C.±9 D.±188.如图,直线经过点,则关于的不等式的解集是()A. B. C. D.9.已知反比例函数y=的图上象有三个点(2,y1),(3,y2),(﹣1,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y110.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm11.下列不能反映一组数据集中趋势的是()A.众数 B.中位数 C.方差 D.平均数12.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队二、填空题(每题4分,共24分)13.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.14.“对顶角相等”的逆命题是________命题(填真或假)15.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.16.已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:(小时)…(升)…由此可知,汽车行驶了__________小时,油箱中的剩余油量为升.17.函数中自变量的取值范围是_________________.18.今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.三、解答题(共78分)19.(8分)化简求值:,其中x=.20.(8分)解一元二次方程:(1)x2﹣5x﹣1=0(2)(2x﹣3)2=(x+2)221.(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.22.(10分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.(1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;(2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;(3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.①求证:四边形是半对角四边形;②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.23.(10分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.(1)求,两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.24.(10分)先化简,再求值:(3m-)÷,其中m=2019-225.(12分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)冲锋舟从A地到C地的时间为分钟,冲锋舟在静水中的速度为千米/分,水流的速度为千米/分.(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地千米处与救生艇第二次相遇,求k、b的值.26.计算

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

解:①小明从家出发乘上公交车的时间为7-(1200-400)÷400=5分钟,①正确;

②公交车的速度为(3200-1200)÷(12-7)=400米/分钟,②正确;

③小明下公交车后跑向学校的速度为(3500-3200)÷3=100米/分钟,③正确;

④上公交车的时间为12-5=7分钟,跑步的时间为15-12=3分钟,因为3<4,小明上课没有迟到,④正确;

故选D.2、B【解题分析】

根据二次根式的性质,先求出x和y的值,然后代入计算即可.【题目详解】解:∵,∴,,∴且,∴,∴,∴,∵,∴的算术平方根为1;故选:B.【题目点拨】本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.3、C【解题分析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】解:最简二次根式被开方数不含分母且被开方数不含能开得尽方的因数或因式,根据条件只有C满足题意,故选C.【题目点拨】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、C【解题分析】

根据加权平均数的公式进行计算即可得.【题目详解】=1.13(吨),所以这100户平均节约用水的吨数为1.13吨,故选C.【题目点拨】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.5、C【解题分析】

点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【题目详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=AB•BC=×4×5=10∴矩形ABCD的面积=2S=20故选:C.【题目点拨】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.6、C【解题分析】

根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【题目详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【题目点拨】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.7、B【解题分析】

利用完全平方公式的结构特征判断即可确定出k的值.【题目详解】解:∵=(x-9)2,

∴k=-18,

故选:B.【题目点拨】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.8、B【解题分析】

先利用待定系数法求出一次函数解析式,再求出一次函数与x轴的交点坐标,然后找出一次函数图象在x轴上方所对应的自变量的范围即可.【题目详解】解:把(0,3)代入得b=3,所以一次函数解析式为,当y=0时,即,解得x=1,所以一次函数与x轴的交点坐标为(1,0),由函数图象可得,当x<1时,y>0,所以关于x的不等式的解集是x<1.故选:B.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标的取值范围.9、A【解题分析】

先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【题目详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选:A.【题目点拨】本题考查了反比例函数图象的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.10、B【解题分析】∵直角边AC=6cm、BC=8cm∴根据勾股定理可知:BA=√62+82=10∵A,B关于DE对称,∴BE=10÷2=511、C【解题分析】试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.考点:统计量的选择.12、C【解题分析】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C二、填空题(每题4分,共24分)13、(﹣3,2)【解题分析】由“士”的位置向右平移减1个单位,在向上平移1个单位,得所在位置的坐标为(-3,2),

故答案是:(-3,2).14、假【解题分析】

先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【题目详解】命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【题目点拨】考查命题与定理,写出原命题的逆命题是解题的关键.15、.【解题分析】

由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【题目详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【题目点拨】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.16、11.5【解题分析】

根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.【题目详解】根据题意得每小时的用油量为,∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,当y=8时,x=11.5.故答案为:11.5.【题目点拨】此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.17、且【解题分析】

根据分式和二次根式有意义的条件列不等式组求解即可.【题目详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.【题目点拨】本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.18、1【解题分析】

根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.【题目详解】解:这个调查的样本是1名考生的数学成绩,故样本容量是1.故答案为1.【题目点拨】本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.三、解答题(共78分)19、【解题分析】

首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.【题目详解】原式=当时,原式.【题目点拨】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.20、(1)x=;(2)x=5或x=.【解题分析】

(1)利用公式法求解可得;(2)两边直接开平方可得两个一元一次方程,再分别求解可得.【题目详解】解:(1)∵a=1、b=﹣5、c=﹣1,∴△=25﹣4×1×(﹣1)=29>0,则x=;(2)∵(2x﹣3)2=(x+2)2,∴2x﹣3=x+2或2x﹣3=﹣x﹣2,解得:x=5或x=.【题目点拨】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.21、(1)证明见解析;(2).【解题分析】试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;(2)先求出BD的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,∴在Rt△AOB中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD的面积为×AC×BD=×6×8=24,∵四边形ABCD是菱形,∴BC=AB=5,∴5×AM=24,∴AM=,即AE,BF之间的距离是.考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定22、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.【解题分析】

(1)过点作于点,过点作于点,通过解直角三角形可求出,的长;(2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;(3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.【题目详解】解:(1)如图1,过点作于点,过点作于点.,,.在中,;在中,.故答案为:2;.(2)如图2,四边形为半对角四边形,,,,.(3)如图3,①证明四边形为平行四边形,,,,.又,四边形是半对角四边形;②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.当点,向右平移个单位后落在反比例函数的图象上时,,解得:,;当点,向右平移个单位后落在反比例函数的图象上时,,解得:,.综上所述:的值为为或.【题目点拨】本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论