版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省镇江市润州区数学八年级第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,直线与分别交x轴于点,,则不等式的解集为()A. B. C. D.或2.把函数与的图象画在同一个直角坐标系中,正确的是()A. B.C. D.3.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.704.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A.40人 B.30人 C.20人 D.10人5.﹣2的绝对值是()A.2 B. C. D.6.下列运算错误的是()A. B. C. D.7.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是()A.30° B.15° C.18° D.20°8.下列图象能表示一次函数的是()A. B. C. D.9.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A. B.C. D.10.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次11.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个12.如图所示,在平面直角坐标系中,的顶点坐标是,顶点坐标是、则顶点的坐标是()A. B.C. D.二、填空题(每题4分,共24分)13.一次函数的图象如图所示,当时,的取值范围是_______.14.如图,已知一次函数y=−x+b和y=ax−2的图象交于点P(−1,2),则根据图象可得不等式−x+b>ax−2的解集是______.15.如果一个多边形的每一个外角都等于,则它的内角和是_________.16.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.17.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=_____.18.将直线向上平移3个单位长度与直线重合,则直线的解析式为__________.三、解答题(共78分)19.(8分)解方程:(1);(2).20.(8分)如图,将的边延长至点,使,连接,,,交于点.(1)求证:;(2)若,求证:四边形是矩形.21.(8分)如图①,矩形中,,,点是边上的一动点(点与、点不重合),四边形沿折叠得边形,延长交于点.图①图②(1)求证:;(2)如图②,若点恰好在的延长线上时,试求出的长度;(3)当时,求证:是等腰三角形.22.(10分)如图,是学习分式方程应用时,老师板书的问题和两名同学对该题的解答.(老师找聪聪和明明分别用不同的方法解答此题)(1)聪聪同学所列方程中的表示_______________________________________.(2)明明一时紧张没能做出来,请你帮明明完整的解答出来.23.(10分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.(1)求正比例函数和一次函数的表达式;(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;(3)求出的面积.24.(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′(不写画法);(2)并直接写出点B′、C′的坐标:B′()、C′();(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是().25.(12分)在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.26.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.【题目详解】∵∴①或②∵直线与分别交x轴于点,观察图象可知①的解集为:,②的解集为:∴不等式的解集为或.故选D.【题目点拨】本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.2、D【解题分析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【题目详解】解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.故选D.【题目点拨】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.3、B【解题分析】
用四个数的和除以4即可.【题目详解】(60+70+40+30)÷4=200÷4=50.故选B.【题目点拨】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).4、C【解题分析】
根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【题目详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【题目点拨】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.5、A【解题分析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.6、C【解题分析】
根据二次根的运算法则对选项进行判断即可【题目详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.【题目点拨】本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键7、C【解题分析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【题目详解】∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C【题目点拨】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.8、D【解题分析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【题目详解】y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.【题目点拨】考查了一次函数的性质,解题的关键是能够分类讨论.9、D【解题分析】试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m,且去时的速度小于返回的速度,故选D.【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.10、D【解题分析】
A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.11、A【解题分析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.12、A【解题分析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.【题目详解】过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∵四边形ABCD是平行四边形,∴OE=MF=3,∵4+3=7,∴点N的坐标为(7,4).故选A.【题目点拨】此题考查平行四边形的性质,坐标与图形性质,解题关键在于作辅助线.二、填空题(每题4分,共24分)13、【解题分析】
根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.【题目详解】当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),∴x≤2,故答案为:x≤2.【题目点拨】本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.14、x>-1;【解题分析】
根据一次函数的图象和两函数的交点坐标即可得出答案.【题目详解】一次函数和的图象交于点,不等式的解集是.故答案为:.【题目点拨】此题考查了一次函数与一元一次不等式的应用,主要考查了学生的观察能力和理解能力,题型较好,难度不大.15、【解题分析】
根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.【题目详解】解:多边形边数为:360°÷30°=12,
则这个多边形是十二边形;
则它的内角和是:(12-2)•180°=1°.
故答案为:1.【题目点拨】本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.16、【解题分析】
由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【题目详解】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
所以朝上一面的点数不小于3的概率是=,
故答案为:.【题目点拨】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17、【解题分析】分析:本题考查的是菱形的面积问题,菱形的面积即等于对角线积的一半,也等于底乘以高.解析:∵四边形ABCD是菱形,AC=8,DB=6,∴菱形面积为24,设AC与BD相较于点O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因为菱形面积为AB×DH=24,∴DH=.故答案为.18、【解题分析】
根据一次函数的平移规律:左加右减,上加下减,即可求出原直线的解析式.【题目详解】解:∵直线向上平移3个单位长度与直线重合,∴直线向下平移3个单位长度与直线重合∴直线的解析式为:故答案为:.【题目点拨】此题考查的是根据平移后的一次函数解析式,求原直线的解析式,掌握一次函数的平移规律:左加右减,上加下减,是解决此题的关键.三、解答题(共78分)19、(1);(2)或.【解题分析】
(1)用求根根式法求解即可;(2)先移项,然后用因式分解法求解即可.【题目详解】解:(1)∵、、,∴,则;(2)∵,∴,则,∴或,解得:或.【题目点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.20、(1)详见解析;(2)详见解析.【解题分析】
(1)由平行四边形的性质可得,,可得,由“”可证;(2)由一组对边平行且相等可证四边形是平行四边形,由对角线相等的平行四边形是矩形可证平行四边形是矩形.【题目详解】(1)∵四边形是平行四边形∴∴又∵∴(2)∵,∴∴四边形是平行四边形,∴AE=2AO,BC=2BO,又∵,∴∴∴∴是矩形【题目点拨】本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的性质,灵活运用这些性质进行推理是本题的关键.21、(1)证明见解析;(2);(3)证明见解析【解题分析】
(1)由矩形的性质和平行线的性质得出∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,得出∠APN=∠PAN,即可得出NA=NP;(2)由矩形的性质得出CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,由勾股定理得出AE==5,求出DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得出方程,解方程即可;(3)过点D作GH∥AF,交EF于G,交AP于H,则GH∥AF∥PE,证出△PDH是等边三角形,得出DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,证出DH=AH,得出AH=PH,由平行线分线段成比例定理得出,得出EG=FG,再由线段垂直平分线的性质得出DE=DF即可.【题目详解】(1)证明;∵四边形ABCD是矩形,∴AB∥CD,∴∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,∴∠APN=∠PAN,∴NA=NP;(2)解:∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,∴∠PDE=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,∴AE==5,∴DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得:DP2+DE2=PE2,即x2+22=(4-x)2,解得:,即;(3)证明:过点D作GH∥AF,交EF于G,交AP于H,如图所示:则GH∥AF∥PE,∴∠PHD=∠NAH,∵∠PAD=30°,∴∠APD=90°-30°=60°,∠BAP=90°-30°=60°,∴∠PAN=∠BAP=60°,∴∠PHD=60°=∠APD,∴△PDH是等边三角形,∴DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,∴DH=AH,∴AH=PH,∵GH∥AF∥PE,∴,∴EG=FG,又∵GH⊥EF,∴DE=DF,∴△DEF是等腰三角形.【题目点拨】本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理、等边三角形的判定与性质、平行线分线段成比例定理、线段垂直平分线的性质等知识;本题综合性强,熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.22、(1)行驶普通火车客车所用的时间;(2)见解析.【解题分析】
(1)根据题意可知x表达的是时间(2)设普通火车客车的速度为,则高速列车的速度为,根据题意用总路程除以普通火车客车的速度-用总路程除以高速列车的速度=4,列出方程即可【题目详解】解:(1)行驶普通火车客车所用的时间(2)解:设普通火车客车的速度为,则高速列车的速度为,由题意列方程得.整理,得:解,得:经检验是原方程的根因此高速列车的速度为【题目点拨】此题考查分式方程的应用,解题关键在于列出方程23、(1);;(2)图详见解析;(3)3【解题分析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;(2)根据题意描出相应的点,再连线即可;(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.【题目详解】解:(1)把A(1,2)代入中,得,∴正比例函数的表达式为;把A(1,2),B(3,0)代入中,得,解得:,所以一次函数的表达式为;(2)如图所示.(3)由题意可得:.【题目点拨】本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.24、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).【解题分析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点B′、C′的坐标即可;(3)根据平移规律写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优化猪场租赁协议
- 通信工程增项建造师聘用协议
- 商业保理纠纷调解协议
- 智能硬件研发经理招聘合同
- 艺术中心琴行合作教师聘用协议
- 化工厂建设总承包合同
- 船舶制造客户投诉处理办法
- 儿童玩具委托加工无毒材料
- 水源地保护与管理政策宣传
- 文化创意二手房买卖合同模板
- Unit4教案2023-2024学年初中英语人教版九年级全册
- 部编版四年级《道德与法治》上册第8课《网络新世界》 优质课件
- 2022光伏设备作业危险点分析与控制措施手册
- 网络战与网络对抗
- 油毡屋面施工方案
- 2016年6月研究生英语学位课统考题及答案(试卷A)
- 抑郁症学生留校学习家长安全承诺责任书
- 地方融资平台债务和政府中长期支出事项监测平台操作手册-单位
- (医学课件)盘状半月板
- 小学综合实践活动-巧手做月饼教学设计学情分析教材分析课后反思
- 项目财务管理制度
评论
0/150
提交评论