版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年南通市启东九年级中考数学一模试题卷一、选择题1.关于代数式x+2的值,下列说法一定正确的是()A.比2大 B.比2小 C.比x大 D.比x小2.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43° B.47° C.30° D.60°3.下列图标,是轴对称图形的是()A.B.C.D.4.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.8,7 B.6,7 C.8,5 D.5,75.已知x1,x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A.1 B.2 C.3 D.46.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小27.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1 B.2 C.3 D.68.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤19.二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A.函数y2的图象开口向上 B.函数y2的图象与x轴没有公共点 C.当x=1时,函数y2的值小于0 D.当x>2时,y2随x的增大而减小10.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个 B.1个 C.2个 D.3个二、填空题11.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m3,数据899000用科学记数法表示为.12.计算:﹣=.13.分解因式:a3﹣2a2+a=.14.如图,在矩形ABCD中,E是CD的延长线上一点,连接BE交AD于点F.如果AB=4,BC=6,DE=3,那么AF的长为.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.16.如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为.17.如图,点A在反比例函数y1=(x>0)的图象上,点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为.18.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.三、学说明、壶萌题挂步共91分19.(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.20.(1)先化简,再求值:(1﹣)÷,其中m=1;(2)解方程:=3+.21.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.22.某市体育中考现场考试内容有三项:50米跑为必测项目.另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有种选择方案;(2)求小明与小刚选择同种方案的概率.23.如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:≈1.7,结果保留一位小数)24.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0),与x轴交于A、B两点(点A在点B的左侧).(1)求点A和点B的坐标;(2)若点P(m,n)是抛物线上的一点,过点P作x轴的垂线,垂足为点D.①在a>0的条件下,当﹣2≤m≤2时,n的取值范围是﹣4≤n≤5,求抛物线的表达式;②若D点坐标(4,0),当PD>AD时,求a的取值范围.25.如图,已知矩形ABCD中,AB=4,动点P从点A出发,沿AD方向以每秒1个单位的速度运动,连接BP,作点A关于直线BP的对称点E,设点P的运动时间为t(s).(1)若AD=6,P仅在边AD运动,求当P,E,C三点在同一直线上时对应的t的值.(2)在动点P在射线AD上运动的过程中,求使点E到直线BC的距离等于3时对应的t的值.26.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.关于代数式x+2的值,下列说法一定正确的是()A.比2大 B.比2小 C.比x大 D.比x小【分析】根据不等式的性质即可求出答案.解:由于2>0,∴x+2>x,故选:C.2.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43° B.47° C.30° D.60°【分析】如图,延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.3.下列图标,是轴对称图形的是()A.B. C. D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.8,7 B.6,7 C.8,5 D.5,7【分析】找出7位同学投中最多的个数即为众数;将个数按照从小到大的顺序排列,找出中位数即可.解:这组数据中出现次数最多的是8,出现了3次,故众数为8,这组数据重新排列为5、5、6、7、8、8、8,故中位数为7.故选:A.5.已知x1,x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A.1 B.2 C.3 D.4【分析】根据韦达定理得出x1+x2=﹣1,x1x2=﹣3,代入计算可得.解:∵x1,x2是一元二次方程x2+x﹣3=0的两个根,∴x1+x2=﹣1,x1x2=﹣3,则原式=﹣1﹣(﹣3)=﹣1+3=2,故选:B.6.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小2【分析】此题只需根据已知条件分析得到k的值,即可求解.解:∵当x的值减小1,y的值就减小2,∴y﹣2=k(x﹣1)+b=kx﹣k+b,y=kx﹣k+b+2.又y=kx+b,∴﹣k+b+2=b,即﹣k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,当x的值增加2时,y的值增加4.故选:A.7.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1 B.2 C.3 D.6【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故选:B.8.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤1【分析】不等式整理后,由已知解集确定出k的范围即可.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A.函数y2的图象开口向上 B.函数y2的图象与x轴没有公共点 C.当x=1时,函数y2的值小于0 D.当x>2时,y2随x的增大而减小【分析】根据题意和二次函数的性质,可以画出函数y2的图象,然后即可判断各个选项中的说法是否正确,本题得以解决.解:∵y1=ax2+bx+c,y1+y2=2,∴y2=2﹣y1,∴函数y2的图象是函数y1的图象关于x轴对称,然后再向上平移2个单位长度得到的,∴函数y2的图象开口向下,故选项A错误;函数y2的图象与x轴有两个交点,故选项B错误;当x=1时,函数y2的值大于0,故选项C错误;当x>2时,y随x的增大而减小,故选项D正确;故选:D.10.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个 B.1个 C.2个 D.3个【分析】根据折叠的性质和等腰三角形的性质即可得到结论.解:如图1,当BB′=B′C时,△BCB'是等腰三角形,如图2,当BC=BB′时,△BCB'是等腰三角形,故若△BCB'是等腰三角形,则符合条件的点D的个数是2,故选:C.二、填空题(本大题共8小题,第11~13题每小题3分,第14~18题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m3,数据899000用科学记数法表示为8.99×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数解:899000=8.99×105,故答案为:8.99×105.12.计算:﹣=0.【分析】先把各二次根式化简为最简二次根式,然后合并即可.解:原式=2﹣2=0.故答案为0.13.分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.14.如图,在矩形ABCD中,E是CD的延长线上一点,连接BE交AD于点F.如果AB=4,BC=6,DE=3,那么AF的长为.【分析】由△EFD∽△EBC,推出=,由此即可解决问题.解:∵四边形ABCD是矩形,∴DF∥BC,AB=CD=4,BC=AD=6,∴△EFD∽△EBC,∴=,∴=,∴DF=,∴AF=AD=DF=6﹣=,故答案为.15.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.【分析】设大和尚有x人,则小和尚有y人,根据“有100个和尚”和大和尚一人分3只,小和尚3人分一只刚好分完100个馒头”列出方程组即可.解:设大和尚有x人,则小和尚有y人,根据题意得,故答案为:.16.如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为60°.【分析】连接BC,利用全等三角形的性质证明△OBC是等边三角形即可解决问题.解:如图,连接BC,设AB交OC于K.∵OC⊥AB,∴AK=BK,∵AC∥OB,∴∠A=∠OBK,∵∠AKC=∠BKC,∴△AKC≌△BKO(ASA),∴OK=KC,∵BK⊥OC,∴BO=BC,∵OB=OC,∴OB=OC=BC,∴△BOC是等边三角形,∴∠BOC=60°,故答案为60°.17.如图,点A在反比例函数y1=(x>0)的图象上,点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为﹣3.【分析】设点A坐标(a,),由AB⊥y轴,可得点B(ak,),由三角形面积公式可求k的值.解:设点A坐标(a,)∵点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,∴∴x=ak∴点B(ak,)∵△AOB的面积为2∴(a﹣ak)×=2∴1﹣k=4∴k=﹣3故答案为:﹣318.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是3.【分析】以O为坐标原点建立坐标系,过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F,设点P的坐标为(x,y),则x2+y2=1.然后证明△ECP≌△FPB,由全等三角形的性质得到EC=PF=y,FB=EP=2﹣x,从而得到点C(x+y,y+2﹣x),最后依据两点间的距离公式可求得AC=,最后,依据当y=1时,AC有最大值求解即可.解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.三、学说明、壶萌题挂步共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)根据解一元一次不等式的基本步骤依此计算可得.解:(1)原式=﹣1+6×﹣3,=﹣1+3﹣3,=﹣1;(2)去分母,得:6x﹣3(x+2)<2(2﹣x),去括号,得:6x﹣3x﹣6<4﹣2x,移项,得:6x﹣3x+2x<4+6,合并同类项,得:5x<10,系数化为1,得:x<2.20.(1)先化简,再求值:(1﹣)÷,其中m=1;(2)解方程:=3+.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m的值代入计算即可求出值.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)原式=,=,=.当m=1时,原式==﹣;(2)去分母得:1=3x﹣9﹣x,解得:x=5,经检验x=5是分式方程的解.21.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.22.某市体育中考现场考试内容有三项:50米跑为必测项目.另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有4种选择方案;(2)求小明与小刚选择同种方案的概率.【分析】(1)先列举出毎位考生可选择所有方案:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.(2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可.解:(1)毎位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.故答案为4.(2)用A、B、C、D代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:解法二:用列表法分析如下:小刚小明ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)两人选择的方案共有16种等可能的结果,其中选择同种方案有4种,所以小明与小刚选择同种方案的概率==.23.如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:≈1.7,结果保留一位小数)【分析】把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到水面的距离,进而利用俯角的正切值可求得CH长度.CH﹣AE﹣EH即为AC长度.解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.i==,∵BE=8,AE=6,DG=1.5,BG=1,∴DH=DG+GH=1.5+8=9.5,AH=AE+EH=6+1=7.在Rt△CDH中,∵∠C=∠FDC=30°,DH=9.5,tan30°=,∴CH=9.5.又∵CH=CA+7,即9.5=CA+7,∴CA≈9.15≈9.2(米).答:CA的长约是9.2米.24.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0),与x轴交于A、B两点(点A在点B的左侧).(1)求点A和点B的坐标;(2)若点P(m,n)是抛物线上的一点,过点P作x轴的垂线,垂足为点D.①在a>0的条件下,当﹣2≤m≤2时,n的取值范围是﹣4≤n≤5,求抛物线的表达式;②若D点坐标(4,0),当PD>AD时,求a的取值范围.【分析】(1)解方程ax2﹣2xa﹣3a=0即可得到A点和B点坐标;(2)①由于抛物线的对称轴为直线x=1,而﹣2≤m≤2时,n的取值范围是﹣4≤n≤5,则n=﹣4为二次函数的最小值,从而得到抛物线的顶点坐标为(1,﹣4),然后把顶点坐标代入y=ax2﹣2ax﹣3a中求出a即可得到抛物线解析式;②利用D点坐标(4,0),PD⊥x轴得到点P的横坐标为4,从而得到P(4,5a),然后利用PD>AD得到|5a|>5,从而解不等式得到a的范围.解:(1)把y=0代入二次函数得:a(x2﹣2x﹣3)=0即a(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0);(2)①抛物线的对称轴为直线x=1,∵﹣2≤m≤2时,n的取值范围是﹣4≤n≤5,∴n=﹣4为二次函数的最小值,m=﹣2时,n=5,∴抛物线的顶点坐标为(1,﹣4)把(1,﹣4)代入y=ax2﹣2ax﹣3a得a﹣2a﹣3a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣2x﹣3;②∵D点坐标(4,0),PD⊥x轴,∴点P的横坐标为4,当x=4时,y=ax2﹣2ax﹣3a=5a,∵D点坐标为(4,0),A点坐标为(﹣1,0)∴AD=5∵PD>AD∴|5a|>5,∴a>1或a<﹣1.25.如图,已知矩形ABCD中,AB=4,动点P从点A出发,沿AD方向以每秒1个单位的速度运动,连接BP,作点A关于直线BP的对称点E,设点P的运动时间为t(s).(1)若AD=6,P仅在边AD运动,求当P,E,C三点在同一直线上时对应的t的值.(2)在动点P在射线AD上运动的过程中,求使点E到直线BC的距离等于3时对应的t的值.【分析】(1)设AP=t,则PD=6﹣t,由点A、E关于直线BP对称,得出∠APB=∠BPE,由平行线的性质得出∠APB=∠PBC,得出∠BPC=∠PBC,在Rt△CDP中,由勾股定理得出方程,解方程即可得出结果;(2)①当点E在BC的上方,点E到BC的距离为3,作EM⊥BC于M,延长ME交AD于N,连接PE、BE,则EM=3,EN=1,BE=AB=4,四边形ABMN是矩形,AN=BM==,证出△BME∽△ENP,得出=,求出NP=,即可得出结果;②当点E在BC的下方,点E到BC的距离为3,作EH⊥AB的延长线于H,则BH=3,BE=AB=4,AH=AB+BH=7,HE==,证得△AHE∽△PAB,得出=,即可得出结果.解:(1)设AP=t,则PD=6﹣t,如图1所示:∵点A、E关于直线BP对称,∴∠APB=∠BPE,∵AD∥BC,∴∠APB=∠PBC,∵P、E、C共线,∴∠BPC=∠PBC,∴CP=BC=AD=6,在Rt△CDP中,CD2+DP2=PC2,即:42+(6﹣t)2=62,解得:t=6﹣2或6+2(不合题意舍去),∴t=(6﹣2)s时,P、E、C共线;(2)①当点E在BC的上方,点E到BC的距离为3,作EM⊥BC于M,延长ME交AD于N,连接PE、BE,如图2所示:则EM=3,EN=1,BE=AB=4,四边形ABMN是矩形,在Rt△EBM中,AN=BM===,∵点A、E关于直线BP对称,∴∠PEB=∠PAB=90°,∵∠ENP=∠EMB=∠PEB=90°,∴∠PEN=∠EBM,∴△BME∽△ENP,∴=,即=,∴NP=,∴t=AP=AN﹣NP=﹣=;②当点E在BC的下方,点E到BC的距离为3,作EH⊥AB的延长线于H,如图3所示:则BH=3,BE=AB=4,AH=AB+BH=7,在Rt△BHE中,HE===,∵∠PAB=∠BHE=90°,AE⊥BP,∴∠APB+∠EAP=∠HAE+∠EAP=90°,∴∠HAE=∠APB,∴△AHE∽△PAB,∴=,即=,解得:t=AP=4,综上所述,t=或4.26.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度终止企业法务咨询劳务终止合同
- 员工劳务合同
- 二零二五年度农业科技产品推广与购销合同2篇
- 2024版机械设备维修保养合同范本
- 2025年新型物业保洁服务外包及绿化养护合同3篇
- 二零二五版房地产联合开发居间服务合同标准样本6篇
- 二零二五版户外广告安装与临时设施搭建合同3篇
- 二零二五年智能节水厕所工程承包合同模板2篇
- 二零二五年度白水泥生产设备租赁合同2篇
- 二零二五版小学教师岗位培训与教育质量提升合同3篇
- GA 1551.5-2019石油石化系统治安反恐防范要求第5部分:运输企业
- 拘留所教育课件02
- 冲压生产的品质保障
- 《肾脏的结构和功能》课件
- 2023年湖南联通校园招聘笔试题库及答案解析
- 上海市徐汇区、金山区、松江区2023届高一上数学期末统考试题含解析
- 护士事业单位工作人员年度考核登记表
- 天津市新版就业、劳动合同登记名册
- 产科操作技术规范范本
- 人教版八年级上册地理全册单元测试卷(含期中期末试卷及答案)
- 各种焊工证件比较和释义
评论
0/150
提交评论