河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题含解析_第1页
河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题含解析_第2页
河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题含解析_第3页
河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题含解析_第4页
河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛海港区五校联考2023-2024学年数学九年级第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知点都在反比例函数的图像上,那么()A. B. C. D.的大小无法确定2.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是()A.35° B.40° C.45° D.55°3.已知二次函数的图像与x轴没有交点,则()A. B. C. D.4.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根5.对于不为零的两个实数a,b,如果规定a★b,那么函数的图象大致是()A. B. C. D.6.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=97.如图,将(其中∠B=33°,∠C=90°)绕点按顺时针方向旋转到的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. B. C. D.8.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③9.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(

).A. B. C. D.10.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数11.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是12.在反比例函数y=图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>2 B.k>0 C.k≥2 D.k<2二、填空题(每题4分,共24分)13.若,则的值为_______.14.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.15.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.16.如果关于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有实数根,那么m的取值范围是_____.17.如图抛物线与轴交于,两点,与轴交于点,点是抛物线对称轴上任意一点,若点、、分别是、、的中点,连接,,则的最小值为_____.18.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.三、解答题(共78分)19.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.20.(8分)如图,已知矩形ABCD.在线段AD上作一点P,使∠DPC=∠BPC.(要求:用尺规作图,保留作图痕迹,不写作法和证明)21.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B.

C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;22.(10分)在中,,.(Ⅰ)如图Ⅰ,为边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.求证:(1);(2).(Ⅱ)如图Ⅱ,为外一点,且,仍将线段绕点逆时针旋转得到,连接,.(1)的结论是否仍然成立?并请你说明理由;(2)若,,求的长.23.(10分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.24.(10分)问题背景:如图1设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=2,则∠BPC=°.(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:(3)如图4,∠ABC=∠ADC=90°,AB=BC.求证:BD=AD+DC.(4)若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.25.(12分)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值.26.下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.

参考答案一、选择题(每题4分,共48分)1、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数(k>0)的图象上,

1<3,

∴m>n.

故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.2、D【解析】在△ABB'中根据等边对等角,以及三角形内角和定理,即可求得∠ABB'的度数.【详解】由旋转可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故选:D.【点睛】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.3、C【分析】若二次函数的图像与x轴没有交点,则,解出关于m、n的不等式,再分别判断即可;【详解】解:与轴无交点,,,故A、B错误;同理:;故选C.【点睛】本题主要考查了抛物线与坐标轴的交点,掌握抛物线与坐标轴的交点是解题的关键.4、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a★b,∴∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.6、B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.7、D【解析】根据直角三角形两锐角互余求出,然后求出,再根据旋转的性质对应边的夹角即为旋转角.【详解】解:,,,点、、在同一条直线上,,旋转角等于.故选:D.【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.8、B【分析】根据二次函数的图象可逐项判断求解即可.【详解】解:抛物线与x轴有两个交点,

∴△>0,

∴b2−4ac>0,故①错误;

由于对称轴为x=−1,

∴x=−3与x=1关于x=−1对称,

∵x=−3,y<0,

∴x=1时,y=a+b+c<0,故②错误;

∵对称轴为x=−=−1,

∴2a−b=0,故③正确;

∵顶点为B(−1,3),

∴y=a−b+c=3,

∴y=a−2a+c=3,

即c−a=3,故④正确,

故选B.【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.9、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.10、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.11、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数12、D【分析】根据反比例函数的性质,可求k的取值范围.【详解】∵反比例函数y=图象的每一条曲线上,y都随x的增大而增大,∴k﹣2<0,∴k<2故选:D.【点睛】考核知识点:反比例函数.理解反比例函数性质是关键.二、填空题(每题4分,共24分)13、【解析】根据等式性质,等号两边同时加1即可解题.【详解】解:∵,∴,即.【点睛】本题考查了分式的计算,属于简单题,熟悉分式的性质是解题关键.14、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.15、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.16、m≥﹣1且m≠1【分析】根据方程有实数根得出△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解之求出m的范围,结合m﹣1≠0,即m≠1从而得出答案.【详解】解:∵关于x的一元二次方程(m﹣1)x1﹣4x﹣1=0有实数根,∴△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解得:m≥﹣1,又∵m﹣1≠0,即m≠1,∴m≥﹣1且m≠1,故答案为:m≥﹣1且m≠1.【点睛】本题考查一元二次方程有意义的条件,熟悉一元二次方程有意义的条件是△≥0且二次项系数不为零是解题的关键.17、【分析】连接,交对称轴于点,先通过解方程,得,,通过,得,于是利用勾股定理可得到的长;再根据三角形中位线性质得,,所以;由点在抛物线对称轴上,、两点为抛物线与轴的交点,得;利用两点之间线段最短得到此时的值最小,其最小值为的长,从而得到的最小值.【详解】如图,连接,交对称轴于点,则此时最小.∵抛物线与轴交于,两点,与轴交于点,∴当时,,解得:,,即,,当时,,即,∴,∴,∵点、、分别是、、的中点,∴,,∴,∵点在抛物线对称轴上,、两点为抛物线与轴的交点,∴,∴,∴此时的值最小,其最小值为,∴的最小值为:.故答案为:.【点睛】此题主要考查了抛物线与轴的交点以及利用轴对称求最短路线,用到了三角形中位线性质和勾股定理.正确得出点位置,以及由抛物线的对称性得出是解题关键.18、y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,

故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.三、解答题(共78分)19、证明见解析.【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.20、详见解析【分析】以为圆心,为半径画弧,以为直径画弧,两弧交于点,连接并延长交于点,利用全等三角形和角平分线的判定和性质可得.【详解】解:如图,即为所作图形:∠DPC=∠BPC.【点睛】本题是作图—复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.21、(1)见解析;(2)x的值为2或1时,y的值为2【分析】(1)①先判断出∠BAE=∠CEF,即可得出结论;(2)利用的相似三角形得出比例式即可建立x,y的关系式,代入即可;【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y,EC=8−x,∴.∴y=−x2+x.∵y=2,−x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值为2或1.【点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.22、(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6.【解析】(Ⅰ)(1)根据旋转的性质,得到AD=AE,∠BAD=∠CAE,然后根据SAS证明全等即可;(2)由全等的性质,得到BD=CE,然后即可得到结论;(Ⅱ)(1)与(Ⅰ)同理,即可得到;(2)根据全等的性质,得到,然后利用勾股定理求出DE,根据特殊角的三角函数值,即可求出答案.【详解】解:(Ⅰ)(1)∵,∴,即,在和中,,∴;(2)∵,∴,∴;(Ⅱ)(1)的结论仍然成立,理由:∵将线段绕点逆时针旋转得到,∴是等腰直角三角形,∴,∵,即,在与中,,∴;(2)∵,∴,∵,,∴,∴,∵,∴.【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23、(1)见解析;(2)1.【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【详解】(1)证明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴=,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=1.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.24、(1)135;(2)13;(3)见解析;(4)【分析】简单应用:(1)先利用旋转得出BP'=AP=5,∠PCP'=90°,CP'=CP=2,再根据勾股定理得出PP'=CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'为斜边的直角三角形,即可得出结论;(2)同(1)的方法得出∠APP'=60°,进而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出结论;拓展廷伸:(3)先利用旋转得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判断出点D'在DC的延长线上,最后用勾股定理即可得出结论;(4)先利用旋转得出BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',再判断出点D'在AD的延长线上,最后用勾股定理即可得出结论.【详解】解:简单应用:(1)如图2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,将△ACP绕点C逆时针旋转90°得到△CBP',连接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根据勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案为:135;(2)如图3,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,将△ACP绕点A逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根据勾股定理得,BP'==13,∴CP=13,故答案为:13;拓展廷伸:(3)如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论