湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题含解析_第1页
湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题含解析_第2页
湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题含解析_第3页
湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题含解析_第4页
湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市芙蓉区长郡芙蓉中学2024届八年级数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式正确的是()A. B.C. D.2.15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数 C.众数 D.方差3.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要()分钟A.12 B.14 C.18 D.204.点向右平移2个单位得到对应点,则点的坐标是()A. B. C. D.5.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为()A.65° B.60° C.55° D.45°6.如图所示,四边形OABC是矩形,△ADE是等腰直角三角形,∠ADE=90°,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=(x>0)的图象上.△ADE的面积为,且AB=DE,则k值为()A.18 B. C. D.167.已知,则下列结论正确的是()A. B. C. D.8.使分式无意义,则x的取值范围是()A.x≠1 B.x=1 C.x<1 D.x≠-19.已知矩形的较短边长为6,对角线相交成60°角,则这个矩形的较长边的长是()A. B. C.9 D.1210.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁11.正比例函数的图象经过点,,当时,,则的取值范围是()A. B. C. D.12.关于二次函数y=﹣2x2+1,以下说法正确的是()A.开口方向向上 B.顶点坐标是(﹣2,1)C.当x<0时,y随x的增大而增大 D.当x=0时,y有最大值﹣二、填空题(每题4分,共24分)13.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.14.因式分解:a2﹣6a+9=_____.15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.16.如图,已知直线的解析式为.分别过轴上的点,,,…,作垂直于轴的直线交于,,,,,将,四边形,四边形,,四边形的面积依次设为,,,,.则=_____________.17.一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。18.已知函数,则x取值范围是_____.三、解答题(共78分)19.(8分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.(1)求甲、乙两个工厂每天各能加工多少件新产品.(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.20.(8分)已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数于点(2,a),求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.21.(8分)己知:,,求下列代数式的值:(1);(2).22.(10分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.23.(10分)我们把对角线互相垂直的四边形叫做垂美四边形.(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,写出证明过程。(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=,BC=1求GE的长.24.(10分)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若,,,求AE的长.25.(12分)四边形中,,,,,垂足分别为、.(1)求证:;(2)若与相交于点,求证:.26.在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(-2,2),D(1,2),E(1,0),F(-2,0).(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据分式的性质,分式的加减,可得答案.【题目详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【题目点拨】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.2、B【解题分析】

由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.

故选B.【题目点拨】本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、A【解题分析】

根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.【题目详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是:1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得:10x+16×=16,解得:x=,∴乙从B地到A地需要的时间为:(分钟);故选:A.【题目点拨】本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.4、A【解题分析】

根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.【题目详解】∵点A(1,2)向右平移2个单位得到对应点,∴点的坐标为(1+2,2),即(3,2).故选A.【题目点拨】本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.5、A【解题分析】

先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。【题目详解】解:根据题意得出MN是线段BC的垂直平分线,∵CD=BD,∴∠B=∠BCD=30°.∵∠B=30°,∠A=55°,∴∠ACB=180°-∠A-∠B=95°,∴∠ACD=∠ACB-∠BCD=65°,故选:A.【题目点拨】本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.6、B【解题分析】

设B(m,5),则E(m+3,3),因为B、E在y=上,则有5m=3m+9=k,由此即可解决问题;【题目详解】解:∵△ADE是等腰直角三角形,面积为,∴AD=DE=3,∵AB=DE,∴AB=5,设B(m,5),则E(m+3,3),∵B、E在y=上,则有5m=3m+9=k∴m=,∴k=5m=.故选B.【题目点拨】本题考查反比例函数系数k的几何意义,等腰直角三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7、D【解题分析】

根据不等式的性质,求出不等式的解集即可.【题目详解】解:不等式两边都除以2,得:,故选:D.【题目点拨】本题考查了解一元一次不等式,能根据题意得出不等式的解集是解此题的关键.8、B【解题分析】

要是分式无意义,分母必等于0.【题目详解】∵分式无意义,

∴x-1=0,

解得x=1.

故选:B.【题目点拨】考核知识点:分式无意义的条件.熟记无意义的条件是关键.9、B【解题分析】

根据矩形对角线相等且互相平分的性质和题中的条件易得△AOB为等边三角形,即可得到矩形对角线的长,进而求解即可.【题目详解】如图:AB=6,∠AOB=60°,∵四边形是矩形,AC,BD是对角线,∴OA=OB=OC=OD=BD=AC,在△AOB中,OA=OB,∠AOB=60°,∴OA=OB=AB=6,BD=2OB=12,∴BC=.故选:B.【题目点拨】本题主要考查了矩形的性质,勾股定理等内容,熟悉性质是解题的关键.10、B【解题分析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【题目详解】解:∵3.6<7.4<8.1,

∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,

∵95>92,

∴乙同学最近几次数学考试成绩的平均数高,

∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.

故选B.【题目点拨】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11、C【解题分析】

由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【题目详解】解:由题意可知:在正比例函数y=(1-2m)x中,y随x的增大而减小

由一次函数性质可知应有:1-2m<0,即-2m<-1,

解得:故选:C【题目点拨】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.12、C【解题分析】

根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解:∵二次函数y=﹣2x2+1,∴该函数图象开口向下,故选项A错误;顶点坐标为(0,1),故选项B错误;当x<0时,y随x的增大而增大,故选项C正确;当x=0时,y有最大值1,故选项D错误;故选:C.【题目点拨】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每题4分,共24分)13、B【解题分析】

根据二次根式有意义的条件即可解答.【题目详解】由题意得,1﹣x≥0,解得,x≤1.故选B.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解决问题的关键.14、【解题分析】

试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.考点:因式分解.15、2.1.【解题分析】

连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【题目详解】解:如图,连接CP.∵∠ACB=90°,AC=3,BC=1,∴AB=,∵PE⊥AC,PF⊥BC,∠ACB=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×1×3=×5•CP,解得CP=2.1.∴EF的最小值为2.1.故答案为2.1.16、【解题分析】

根据梯形的面积公式求解出的函数解析式即可.【题目详解】根据梯形的面积公式,由题意得故我们可以得出∵当均成立∴成立故答案为:.【题目点拨】本题考查了解析式与坐标轴的几何规律题,掌握梯形的面积公式是解题的关键.17、-1【解题分析】

根据已知方程有两个相等的实数根,得出b2-4ac=0,建立关于k的方程,解方程求出k的值即可.【题目详解】∵一元二次方程x2-2x-k=0有两个相等的实数根,∴b2-4ac=0,即4+4k=0解之:k=-1故答案为:-1【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式:△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18、x≥1.【解题分析】试题解析:根据题意得,x-1≥0,解得x≥1.考点:函数自变量的取值范围.三、解答题(共78分)19、(1)甲、乙两个工厂每天各能加工16和24件.(2)合作.【解题分析】解:(1)设甲工厂每天能加工件产品,则乙工厂每天能加工件产品,根据题意,得20、(1)a=1;(2)k=2,b=-3;(3).【解题分析】

(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a的值;(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b的值;(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x轴的交点即可.【题目详解】(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(-1,-5)及点(2,a)代入一次函数解析式,得:,又由(1)知a=1,解方程组得到:k=2,b=-3;(3)由(2)知一次函数解析式为:y=2x-3,y=2x-3与x轴交点坐标为(,0)∴所求三角形面积S=×1×=.【题目点拨】本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,是基础题型.21、(1);(2)【解题分析】

(1)首先将代数式进行通分,然后根据已知式子,即可得解;(2)首先根据完全平方差公式,将代数式展开,然后将已知式子转换形式,代入即可得解.【题目详解】∵,,∴,(1)(2)【题目点拨】此题主要考查二次根式的运算,熟练掌握,即可解题.22、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解题分析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【题目详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),D′(2,﹣1),∴直线D′E′的解析式为,直线BC的解析式为y=x﹣3,由,解得,,∴F.把点F向上平移3个单位,向右平移个单位得到点G,∴G().(3)以点A为圆心,以AE为半径作⊙A,则DE为⊙A的切线.①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.∵CM=CN,∠MCN=30°,∴∠CNM=∠CMN=75°,∴∠ANE=∠CNM=75°,∴∠EAN=15°,∴∠PAN=∠ANP=15°,∴∠EPN=30°,∴PN=AP=2x,PE=x,∴2x+x=,∴x=2﹣3,∴AN=,∴CM=CN==.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形,PB=AE=,在Rt△PBM中,∠PBM=30°,∴BM=2,∴CM=BC﹣BM=2﹣2.③如图2﹣1中.CM=CN时,同法可得CM=.④如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.∵CD=6+2=8,∠DCP=30°,∴PC=PM=4,∴CM=8综上所述,满足条件的CM的值为或或2﹣2或8.【题目点拨】本题考查一次函数的应用、锐角三角函数、勾股定理、解直角三角形、等腰三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、菱形、正方形【解题分析】【分析】(1)根据垂美四边形的定义进行判断即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【题目详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,正方形的对角线互相垂直,符合垂美四边形的定义,而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,故答案为:菱形、正方形;(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:如图2,连接AC、BD,交点为E,则有AC⊥BD,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,设AB与CE的交点为M∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,又∵AG=AC,AB=AE,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∠AME=∠BMC,∴∠ABG+∠BMC=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=,BC=1∴AB=2,∴,∴,∴,GE的长是.【题目点拨】本题考查了四边形综合题,涉及到正方形的性质、菱形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.24、(1)见解析;(2)【解题分析】试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.试题解析:(1)证明:∵CF=BE,∴CF+EC=BE+EC.即

EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)∵四边形AEFD是矩形,DE=1,∴AF=DE=1.∵AB=6,BF=10,∴AB2+AF2=62+12=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE=.25、(1)证明见解析;(2)证明见解析.【解题分析】

(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【题目详解】证明:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,又AD=BC,∴四边形ABCD是平行四边形,∴AO=CO.【题目点拨】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.26、(1),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论