2024届湖南省邵阳市郊区数学七下期末联考试题含解析_第1页
2024届湖南省邵阳市郊区数学七下期末联考试题含解析_第2页
2024届湖南省邵阳市郊区数学七下期末联考试题含解析_第3页
2024届湖南省邵阳市郊区数学七下期末联考试题含解析_第4页
2024届湖南省邵阳市郊区数学七下期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省邵阳市郊区数学七下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条角平分线的交点2.下列多项式中,能用公式法分解因式的是A. B. C. D.3.方程2﹣去分母得()A.2﹣2(2x﹣4)=﹣(x﹣7) B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣2(2x﹣4)=﹣(x﹣7) D.以上答案均不对4.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)25.下列命题中,属于真命题的是()A.两个锐角的和是锐角 B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等 D.在同一平面内,如果a//b,b//c,则a//c6.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55° C.45° D.50°7.将某不等式组的解集表示在数轴上,下列表示正确的是()A. B.C. D.8.下列图案中,()是轴对称图形.A. B. C. D.9.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125° B.120° C.140° D.130°10.如图,在五边形ABCDE中,,DP、CP分别平分、,则的度教是()A. B. C. D.二、填空题(本大题共有6小题,每小题3分,共18分)11.在平面直角坐标系中,线段AB=5,AB∥x轴,若A点坐标为(-1,3),则B点坐标为______.12.若不等式组有解,则的取值范围是______.13.已知关于x的不等式3x-a≤1的正整数解恰好是1、2、3、4,则a的取值范围为______14.如图,是中的角平分线,于点,,,,则长是______.15.对于下列四个条件:①∠A+∠B=∠C;②∠A:∠B:∠C=3:4:5,③∠A=90°-∠B;④∠A=∠B=0.5∠C,能确定ΔABC是直角三角形的条件有________.(填序号即可)16.若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.组别正确字数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.18.(8分)已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.19.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.(8分)在一个不透明的袋子中装有仅颜色不同的6个红球与9个黑球,先从袋子中摸出m个红球.(1)若再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,当事件A为必然事件时,求m的值;(2)若再放入m个黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.21.(8分)设2+的整数部分为x,小数部分为y.(1)求2x+1的平方根;(2)化简:|y-2|.22.(10分)在图①中,由;.可以得到:.由此可知:.请由图②说明这一结论.23.(10分)已知代数式,当,时,代数式的值分别是1和11,求代数式的值为-3时,的值.24.(12分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据角平分线的性质求解即可.【题目详解】到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点故答案为:D.【题目点拨】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.2、C【解题分析】

能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍,由此即可判断.【题目详解】A、只能提公因式分解因式,故A选项错误;B、只能提公因式分解因式,故B选项错误;C、能用平方差公式进行因式分解,故C选项正确;D、不能继续分解因式,故D选项错误.故选C.【题目点拨】本题考查用公式法进行因式分解能用公式法进行因式分解的式子的特点需识记.3、C【解题分析】

两边同时乘以6即可得解.【题目详解】解方程:去分母得:.故选C.【题目点拨】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.4、D【解题分析】

根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【题目详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;

B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;

C、等式左边是单项式,不是因式分解,故本选项错误;

D、符合因式分解的定义,故本选项正确.

故选D.【题目点拨】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、D【解题分析】

试题解析:A.两个锐角的和是锐角,错误;B.在同一平面内,如果a⊥b,b⊥c,则a∥c,错误;C.同位角相等,错误;D.在同一平面内,如果a//b,b//c,则a//c,正确.故选D.6、A【解题分析】

利用翻折不变性,平行线的性质即可解决问题.【题目详解】根据折叠得出∠1=∠DEM=12∠FED∵是一张宽度相等的纸条,∴AE∥BM,∠2=130°,∴∠FED=∠2=130°,∴∠1=65°故答案选:A【题目点拨】本题考查翻折、平行线的性质,解题的关键是熟练掌握翻折、平行线的性质。7、B【解题分析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8、D【解题分析】

根据轴对称图形的概念求解.【题目详解】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【题目点拨】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、D【解题分析】如图,∵EF∥GH,∴∠FCD=∠1.∵∠FCD=∠1+∠A,∠1=40°,∠A=90°.∴∠1=∠FCD=130°.故选D.10、A【解题分析】

根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【题目详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,

∴∠BCD+∠CDE=540°-α,

∵∠BCD、∠CDE的平分线在五边形内相交于点O,

∴∠PDC+∠PCD=(∠BCD+∠CDE)=270°-α,

∴∠P=180°-(270°-α)=α-90°.

故选:A.【题目点拨】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.二、填空题(本大题共有6小题,每小题3分,共18分)11、(4,3)或(−6,3).【解题分析】

线段AB∥x轴,A、B两点纵坐标相等,又AB=5,B点可能在A点左边或者右边,根据距离确定B点坐标.【题目详解】∵AB∥x轴,∴A、B两点纵坐标都为3,又∵AB=5,∴当B点在A点左边时,B(-6,3),当B点在A点右边时,B(4,3).故答案为:(4,3)或(−6,3).【题目点拨】考查坐标与图形性质,注意分类讨论,不要漏解.12、a>2.【解题分析】

先分别解两个不等式,求出他们的解集,然后根据不等式组有解即可求出a的取值范围.【题目详解】,解①,得x≥5-2a,解②,得x<1,∵不等式组有解,∴5-2a<1,∴a>2.故答案为:a>2.【题目点拨】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.13、11≤a<14【解题分析】

根据题意首先求得不等式3x-a≤1的解集,其中方程的解可用a表示,根据不等式的正整数解即可得到一个关于a的不等式组,即可求得a的取值范围.【题目详解】解:解不等式3x-a≤1得:,∵其正整数解恰好是1、2、3、4,∴,解得11≤a<14.故答案为:11≤a<14.【题目点拨】本题考查一元一次不等式的整数解,解答此题要先求出不等式的解集,再根据整数解的情况确定a的取值范围.本题要求熟练掌握不等式及不等式的解法,准确的理解整数解在不等式解集中的意义,并会逆推式子中有关字母的取值范围.14、3【解题分析】

见详解中图,因为是中的角平分线,所以根据角平分线的性质可得:,因为,因为,所以=,所以,所以.【题目详解】解:如图所示:过点D做于F,是中的角平分线,根据角平分线的性质可得:,,,=,所以,;故答案为3.【题目点拨】本题考查的是角平分线的性质,根据题意由面积关系可以求出正确答案.15、①③④【解题分析】分析:根据直角三角形的判定对各个条件进行分析,从而得到答案.详解:①、∵∠A+∠B=∠C∠A+∠B+∠C=180°,∴2∠C=180°∴∠C=90°,∴△ABC是直角三角形,故①正确;②、∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不是直角三角形;故②错误③、∵∠A=90°-∠B,∴∠A+∠B=90°,∴△ABC是直角三角形,故③正确;④∵设∠C=x,则∠A=∠B=0.5x,∴0.5x+0.5x+x=180°,解得x=90°,∴∠C=90°,故④正确.综上所述,是直角三角形的是①③④.故答案为:①③④.点睛:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16、【解题分析】

先根据第三象限的点的坐标的符号特征列出关于m的不等式组,再求解即可.【题目详解】由题意得,解得:.【题目点拨】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解下列各题(本大题共8小题,共72分)17、(1)m=30,n=20;(2)“C组”所对应的圆心角的度数是90°;(3)估计这所学校本次听写比赛不合格的学生人数为450人.【解题分析】

(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【题目详解】(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【题目点拨】本题考查的是频数分布表、条形统计图和扇形统计图,用样本估计总体的知识.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18、(1)点P的坐标为(0,3);(2)点P的坐标为(﹣9,0);(3)点P的坐标为(﹣3,2);(4)点P的坐标为(﹣3,2).【解题分析】

(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标为0求得m的值,代入点P的坐标即可求解;(3)让纵坐标-横坐标=5得m的值,代入点P的坐标即可求解;(4)让纵坐标为2求得m的值,代入点P的坐标即可求解.【题目详解】(1)∵点P(3m-6,m+1)在y轴上,

∴3m-6=0,

解得:m=2,

∴m+1=1+2+1=3-,

∴点P的坐标为:(0,3);

(2)∵点P(3m-6,m+1)在x轴上,

∴m+1=0,

解得:m=-1,

∴3m-6=3×(-1)-6=-9,

∴P点坐标为:(-9,0).(3)∵点P(3m-6,m+1)的点P的纵坐标比横坐标大5,∴m+1-(3m-6)=5,解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).(4)∵点P(3m-6,m+1)在过点A(-1,2),并且与x轴平行的直线上,∴m+1=2,解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).19、(1)35°;(2)3.5cm.【解题分析】试题分析:⑴根据垂直平分线的性质易得∠C=∠CAE,AB=AE=EC,由三角形外角的性质可知∠AED=2∠C,再由三角形内角和定理即可求得所求角的度数.⑵根据△ABC的周长与题中所给条件,可知AB+BC的长度,由⑴中所得相等的边易得,从而求得DC的长.试题解析:⑴∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴;⑵∵△ABC周长为13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20、(1)m的值为6;(2)m=1.【解题分析】

(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【题目详解】(1)当袋子中全为黑球,即摸出6个红球时,摸到黑球是必然事件故m的值为6;(2)由题意得:解得:故m的值为1.【题目点拨】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.21、(1)±3;(2)4-.【解题分析】

(1)先求出x和y的值,再根据平方根的定义求解;(2)根据绝对值的定义求解即可。【题目详解】解,∴x=4,y=2+-4=-2(1)(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论