2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷含解析_第1页
2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷含解析_第2页
2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷含解析_第3页
2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷含解析_第4页
2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省金华市武义第三中学高三第三次测评数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.2.已知,若,则等于()A.3 B.4 C.5 D.63.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.4.若复数满足,则()A. B. C.2 D.5.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.6.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.8.双曲线的渐近线方程是()A. B. C. D.9.函数的图像大致为().A. B.C. D.10.已知函数,则()A.1 B.2 C.3 D.411.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④12.在的展开式中,含的项的系数是()A.74 B.121 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.14.数列的前项和为,数列的前项和为,满足,,且.若任意,成立,则实数的取值范围为__________.15.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.16.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.18.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.19.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.20.(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.21.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.22.(10分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.2、C【解析】

先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.3、C【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.4、D【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.5、C【解析】

需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题6、B【解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.7、A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.8、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.9、A【解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.10、C【解析】

结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.11、C【解析】

①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.12、D【解析】

根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】

根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.14、【解析】

当时,,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解.【详解】解:当时,,则,,当时,,,,,,(当且仅当时等号成立),,故答案为:.【点睛】本题主要考查已知求,累乘法,主要考查计算能力,属于中档题.15、【解析】

取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.16、3【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为,如图所示,平面,所以底面积为,几何体的高为,所以其体积为.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)先由正弦定理,得到,进而可得,再由,即可得出结果;(2)先由余弦定理得,,再根据题中数据,可得,从而可求出,得到,进而可求出结果.【详解】(1)由正弦定理得,所以,因为,所以,即,所以,又因为,所以,.(2)在和中,由余弦定理得,.因为,,,,又因为,即,所以,所以,又因为,所以.所以的面积.【点睛】本题主要考查解三角形,灵活运用正弦定理和余弦定理即可,属于常考题型.18、(1);(2);(3)见解析.【解析】

(1)由,能求出经过变换后得到的数阵;(2)由,,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过.【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.同理,经过变换后所有的第二行的所有数的和为.所以的所有可能取值的和为,又因为、、、,所以的所有可能取值的和不超过.【点睛】本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大.19、(1)(2)函数有两个零点和【解析】试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。解析:(1)当时,,因为函数在上单调递增,所以当时,恒成立.[来源:Z&X&X&K]函数的对称轴为.①,即时,,即,解之得,解集为空集;②,即时,即,解之得,所以③,即时,即,解之得,所以综上所述,当函数在区间上单调递增.(2)∵有两个极值点,∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.∵∴函数也是在区间和上单调递增,在上单调递减∵,∴是函数的一个零点.由题意知:∵,∴,∴∴,∴又=∵是方程的两个根,∴,,∴∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增∴当时,,当时,当时,∴函数有两个零点和.20、(1)在上增;在上减;(2)(i);(ii)2【解析】

(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,,只需,根据的单调性,即可求解.【详解】(1)当时,,即在上增;当时,,,,,即在上增;在上减;(2)(i),.(ⅱ),即,即,只需.当时,,在单调递增,所以满足题意;当时,,,,所以在上减,在上增,令,..在单调递减,所以所以在上单调递减,,综上可知,整数的最大值为.【点睛】本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论思想

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论