2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷含解析_第1页
2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷含解析_第2页
2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷含解析_第3页
2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷含解析_第4页
2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东、湖北重点中学高考数学倒计时模拟卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位2.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.3.抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为()A. B. C.1 D.4.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.65.若,则函数在区间内单调递增的概率是()A.B.C.D.6.的展开式中含的项的系数为()A. B.60 C.70 D.807.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.8.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.139.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种10.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.11.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件12.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.14.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________15.在的展开式中,的系数等于__.16.“石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.18.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.19.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.20.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.22.(10分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.879

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】依题意有的周期为.而,故应左移.2、C【解析】

由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.3、B【解析】

设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.4、C【解析】

由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.5、B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.6、B【解析】

展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.7、C【解析】

根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.8、D【解析】

利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.9、B【解析】

利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题10、A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.11、C【解析】

先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.12、B【解析】

由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【详解】解:设,由双曲线的定义得出:,,由图可知:,又,即,则,为等腰三角形,,设,,则,,即,解得:,则,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案为:.【点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.14、4【解析】

根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解.【详解】由题意,函数,且,,可得,,又由,可得为常数列,且,数列表示首项为4,公差为2的等差数列,所以,其中数列满足,所以,所以,又由,可得数列的前n项和为,数列的前n项和为,所以数列的前项和为,满足,所以,即,又由表示不超过实数的最大整数,所以.故答案为:4.【点睛】本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.15、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.16、【解析】

用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.18、(1)(2)存在;实数的取值范围是【解析】

(1)根据椭圆定义计算,再根据,,的关系计算即可得出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围.【详解】(1)由题意可知,,.又,,,椭圆的方程为:.(2)若存在点,使得以,为邻边的平行四边形是菱形,则为线段的中垂线与轴的交点.设直线的方程为:,,,,,联立方程组,消元得:,△,又,故.由根与系数的关系可得,设的中点为,,则,,线段的中垂线方程为:,令可得,即.,故,当且仅当即时取等号,,且.的取值范围是,.【点睛】本题主要考查了椭圆的性质,考查直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)(2)【解析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所以直线被圆截得的弦长的最大值为.考点:直线与圆位置关系20、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.21、(1)见解析(2)【解析】

(Ⅰ)取的中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【详解】(Ⅰ)在棱上存在点,使得平面,点为棱的中点.理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,,又平面,平面,所以,平面.(Ⅱ)由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,,,,,,设平面的法向量为,则由得,令,则,,所以取,显然可取平面的法向量,由题意:,所以.由于平面,所以在平面内的射

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论