版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
~2024学年度第一学期期末抽测八年级数学试题(本卷共6页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.下列各数中,无理数是()A. B. C.3.14 D.3.下列四组数中,勾股数是()A.5,12,13 B.1,2,3 C.0.3,0.4,0.5 D.,,4.若,,,则的大小为()A. B. C. D.5.在平面直角坐标系中,点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知点,在一次函数的图象上,则与的大小关系是()A. B. C. D.无法确定7.将函数的图象向上平移2个单位长度,所得直线对应的函数表达式为()A. B. C. D.8.如图,方格纸中有3个小方格被涂成黑色,若从其余13个白色小方格中选出一个涂成黑色,使所有的黑色方格构成轴对称图形,则不同的涂色方案共有()(第8题)A.1个 B.2个 C.3个 D.4个二、填空题(本大题有8小题,每小题4分,共32分)9.用四舍五入法取近似值,将数0.0518精确到0.001的结果是______.10.点关于轴对称的点的坐标是______.11.若等腰三角形的两边长分别是和,则这个等腰三角形的周长是______.12.如图,已知,要使(SSS),只需补充一个条件______.(第12题)13.如图,将长、宽的长方形剪拼成一个正方形,则正方形边长为______.(第13题)14.如图,平分,,的延长线交于点,若,则的度数为______.(第14题)15.如图,在中,平分,.若,,则______.(第15题)16.若一次函数的图象如图所示,则关于的不等式的解集是______.(第16题)三、解答题(本大题有9小题,共84分)17.(本题10分)(1)计算:;(2)求的值:.18.(本题8分)已知:如图,在中,,,于点,.求证:.(第18题)19.(本题8分)已知:如图,在中,,,点在的延长线上,.求证:.(第19题)20.(本题8分)如图,方格纸中小正方形的边长为1个单位长度,为格点三角形.(1)建立平面直角坐标系,使点的坐标为,点的坐标为.此时,点的坐标为(2)判断的形状,并说明理由.(第20题)21.(本题9分)已知函数与.(1)画这两个函数的图象;(2)求这两个函数的图象交点的坐标;(3)当时,对于的每一个值,函数的值大于函数的值且小于1,则的值为______.(直接写结果)(第21题)22.(本题9分)如图,将长方形纸片沿折叠,使、两点重合.点落在点处.已知,.(1)求证:是等腰三角形;(2)求线段的长.(第22题)23.(本题12分)甲、乙两人参加全程7.5千米的“徐马欢乐跑”,已知他们参赛时各自的路程(千米)与时间(分钟)之间的函数关系分别如图所示.下面是甲、乙两人的对话:甲:我前面跑得有点快了,在距离起点①千米的补给站休息了②分钟,我的成绩是③分钟.乙:我在补给站见到你了,我的成绩是④分钟.根据以上信息,解决下列问题:(1)填空:①______,②______,③______,④______;(2)已知甲、乙两人于上午7:50起跑,则两人何时在补给站相遇?(3)当乙抵达终点时,甲距离终点还有多少千米?(第23题)24.(本题8分)(1)如图①,已知线段,分别以、为圆心,大于的长为半径画弧,两弧交于点、,过、两点作直线.在上取点,作射线,连接.判断与的大小关系,并说明理由.(2)如图②,点、在直线的同侧,请用无刻度的直尺和圆规,在直线上作点,使得.(保留作图痕迹,不写作法)(第24题)25.(本题12分)如图,直线与、轴分别交于点、.为轴上的动点,连接,将线段绕点按顺时针方向旋转,得到线段,连接.(第25题)(1)求直线对应的函数表达式;(2)当点坐标为时,在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由;(3)连接.则的最小值为(直接写结果)2023~2024学年度第一学期期末抽测八年级数学参考答案题号12345678选项CBAABCDD9.0.052 10. 11.或 12. 13.14.82 15.1 16.17.(1)原式(4分).(2),(7分),.18.,,,....在和中,.19.,,.,,...20.(1)如图.;(2)是直角三角形.理由如下:小正方形的边长为1,.,.在中,,,.是直角三角形.(第20题)(注:利用全等证明,酌情给分)(第20题)21.(1)如图.(2)由解得,两函数图象交点的坐标为.(3).(第21题)22.(1)证明:由折叠性质可知.,..是等腰三角形.(2)设,由折叠可知.,.在中,由勾股定理得,.解得.由(1)得,.23.(1)5,15,70,60.(2)设,将代入该式,得,.将代入,得.已知甲和乙于7:50起跑,故两人于8:30在补给站相遇.(3)设,将,分别代入该式,得解得,.将代入该式,得..当乙抵达终点时,甲距离终点还有1千米.24.(1).理由如下:,,直线是线段的垂直平分线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产公司客户服务培训
- 快递相关课程设计思路
- c 课程设计 链表
- 立德树人理念的理论基础与重要意义
- UG NX12.0机电产品三维数字化设计实例教程 教案全套 戚春晓 1.UG设计基础 -6.工程图设计
- 电气自动化技术在电力系统中的应用
- 电气控制教案
- 大型玩具早教课程设计
- 微机原理信号灯课程设计
- 智能家居课程设计体会
- 服从岗位调配申请书
- 以甘蔗为原料年产10万吨生物乙醇工厂设计
- 养老机构养老院服务安全风险分级管控清单
- 单位内发生治安案件、涉嫌刑事案件的报告制度
- 陶艺课程讲义
- 幼儿园一日活动保教工作标准细则
- 银行统计报送工作实施细则
- 中国颈椎病诊治与康复指南
- 禽病防治考试复习题库(含答案)
- 铸造工艺-特种铸造
- 四年级奥数之等量代换(含答案)
评论
0/150
提交评论