安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题含解析_第1页
安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题含解析_第2页
安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题含解析_第3页
安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题含解析_第4页
安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市徽州中学2024届高二数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则()A.1 B. C. D.52.双曲线和有()A.相同焦点 B.相同渐近线 C.相同顶点 D.相等的离心率3.已知,∈C.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.现有四个函数:①;②;③;④的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A.①④②③ B.①④③② C.④①②③ D.③④②①5.在上单调递增,则实数的取值范围为()A. B.C. D.6.“”是“对任意恒成立”的A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件7.已知抛物线和直线,过点且与直线垂直的直线交抛物线于两点,若点关于直线对称,则()A.1 B.2 C.4 D.68.如果函数f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f'(x1A.(13,12)B.(32,3)C.(19.若随机变量服从正态分布,则()附:,.A.1.3413 B.1.2718 C.1.1587 D.1.122810.已知,,复数,则()A. B.1 C.0 D.211.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为()A. B.C. D.12.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600 C.4320 D.5040二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递减区间是_________14.在区间[]上随机取一个实数,则事件“”发生的概率为____.15.在平面直角坐标系中,记椭圆的左右焦点分别为,若该椭圆上恰好有6个不同的点,使得为等腰三角形,则该椭圆的离心率的取值范围是____________.16.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.18.(12分)已知函数(,)的最大值为正实数,集合,集合.(1)求和;(2)定义与的差集:,设、、设均为整数,且,为取自的概率,为取自的概率,写出与的二组值,使,.19.(12分)设事件A表示“关于的一元二次方程有实根”,其中,为实常数.(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.20.(12分)如图,四棱锥,底面为直角梯形,,,,.(1)求证:平面平面;(2)若直线与平面所成角为,求直线与平面所成角的正弦值.21.(12分)设函数.(1)若在其定义域上是增函数,求实数的取值范围;(2)当时,在上存在两个零点,求的最大值.22.(10分)如图,在三棱锥中,两两垂直,,且为线段的中点.(1)证明:平面;(2)若,求平面与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】.故选2、A【解题分析】

对于已知的两条双曲线,有,则半焦距相等,且焦点都在轴上,由此可得出结论.【题目详解】解:对于已知的两条双曲线,有,半焦距相等,且焦点都在轴上,它们具有相同焦点.故选:A.【题目点拨】本题考查双曲线的定义与性质,属于基础题.3、A【解题分析】

根据充分条件和必要条件的定义分析可得答案.【题目详解】显然“”是“”的充分条件,当时,满足,但是不满足,所以“”不是“”的必要条件,所以“”是“”的充分不必要条件.故选:A【题目点拨】本题考查了充分条件和必要条件的定义,属于基础题.4、A【解题分析】

根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【题目详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;

②为奇函数,它的图象关于原点对称,它在上的值为正数,

在上的值为负数,故第三个图象满足;

③为奇函数,当时,,故第四个图象满足;

④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,

故选A.【题目点拨】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.5、D【解题分析】

利用函数在连续可导且单调递增,可得导函数在大于等于0恒成立即可得到的取值范围.【题目详解】因为函数在连续可导且单调递增,所以在恒成立,分离参数得恒成立,即,故选D.【题目点拨】本题考查函数在区间内单调递增等价于在该区间内恒成立.6、C【解题分析】

根据充分条件和必要条件的定义结合判别式的解法进行判断即可.【题目详解】解:对任意恒成立,推不出,,“”是“对任意恒成立”的必要不充分条件.故选:C.【题目点拨】本题主要考查充分条件和必要条件的判断,根据判别式的解法是解决本题的关键.7、B【解题分析】

由于直线与直线垂直,且直线的斜率为1,所以直线的斜率为,而直线过点,所以可求出直线的方程,将直线的方程与抛物线方程联立成方程组,求出的中点坐标,然后将其坐标代入中可求出的值.【题目详解】解:由题意可得直线的方程为,设,由,得,所以,所以的中点坐标为,因为点关于直线对称,所以,解得故选:B【题目点拨】此题考查直线与抛物线的位置关系,点关于直线的对称问题,属于基础题.8、C【解题分析】试题分析:f'(x)=3x2-2x,f(a)-f(0)a-0=a2-a,所以函数f(x)=x3-x2+a是区间[0,a]上的“双中值函数”等价于f'考点:1.新定义问题;2.函数与方程;3.导数的运算法则.【名师点睛】本题考查新定义问题、函数与方程、导数的运算法则以及学生接受鷴知识的能力与运用新知识的能力,难题.新定义问题是命题的新视角,在解题时首先是把新定义问题中的新的、不了解的知识通过转翻译成了解的、熟悉的知识,然后再去求解、运算.9、C【解题分析】

根据正态曲线的对称性,以及,可得结果.【题目详解】,故选:C【题目点拨】本题考查正态分布,重点把握正态曲线的对称性,属基础题.10、B【解题分析】分析:先将等式右边化简,然后根据复数相等的条件即可.详解:故选B.点睛:考查复数的除法运算和复数相等的条件,属于基础题.11、A【解题分析】

构造函数,则可判断,故是上的增函数,结合即可得出答案.【题目详解】解:设,则,∵,,∴,∴是上的增函数,又,∴的解集为,即不等式的解集为.故选A.【题目点拨】本题考查导数与函数单调性的关系,构造函数是解题的关键.12、B【解题分析】试题分析:先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.考点:排列组合.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】

求出导函数,然后在定义域内解不等式得减区间.【题目详解】,由,又得.∴减区间为,答也对.故答案为或.【题目点拨】本题考查导数与函数的单调性,一般由确定增区间,由确定减区间.14、【解题分析】

由,得﹣2≤x≤0,由此利用几何概型概率计算公式能求出事件“”发生的概率.∵,∴﹣2≤x≤0,∵在区间[﹣3,5]上随机取一个实数x,∴由几何概型概率计算公式得:事件“”发生的概率为p==.故答案为:.【题目点拨】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.15、【解题分析】分析:椭圆上恰好有6个不同的点,使得为等腰三角形,6个不同的点有两个为椭圆短轴的两个端点,另外四个分别在第一、二、三、四象限,且上下对称左右对称,要注意分情况讨论详解:椭圆上恰好有6个不同的点,使得为等腰三角形,6个不同的点有两个为椭圆短轴的两个端点,另外四个分别在第一、二、三、四象限,且上下对称左右对称,设P在第一象限,,当时,,即,解得又因为,所以当时,,即且解得:综上或点睛:圆锥曲线中离心率范围问题是一个难点,在分析时要根据条件找到a和c之间的不等关系,有时可能要利用基本不等式、正余弦定理等其他知识综合分析.16、【解题分析】

由已知棱柱体积与棱锥体积可得S到下底面距离与棱柱高的关系,进一步得到S到上底面距离与棱锥高的关系,则答案可求.【题目详解】设三棱柱的底面积为,高为,则,再设到底面的距离为,则,得,所以,则到上底面的距离为,所以三棱锥的体积为.故答案为1.【题目点拨】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为,本题是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)由正弦定理得;(2)由,再由余弦订立的得.试题解析:(1)由已知结合正弦定理得所以即,亦即因为,所以.(2)由,,得,即,又,得所以,又,∴18、(1),;(2),或,.【解题分析】

(1)根据求解集合,然后根据二次函数的最大值大于0确定,求集合;(2)求与的两组值,根据、、设均为整数,且,可以分中有3个元素,中有2个元素,中有1个元素,以及中有6个元素,中有4个元素,中有2个元素两种情况讨论得到与的两组值.【题目详解】(1)不等式的解集是,即函数(,)的最大值为正实数,,,,不等式的解集是,.(2)要使,,可以分两种情况,①可以使中有3个元素,中有2个元素,中有1个元素,根据(1)的结果,可知,此时集合有3个整数元素,中有1个元素即;②可以使中有6个元素,中有4个元素,中有2个元素,则,此时集合有6个整数元素,,中有2个元素即,综上,与的两组值分别是,或,.【题目点拨】本题考查了函数的最值和解不等式,以及古典概型及其概率计算公式,属于中档题型,本题的第二问只写与的两组值,所以只写出比较简单的两个集合即可.19、(Ⅰ);(Ⅱ).【解题分析】试题分析:(1)列出所有可能的事件,结合古典概型公式可得满足题意的概率值为;(2)利用题意画出概率空间,结合几何概型公式可得满足题意的概率值为.试题解析:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程.若事件A发生,则a2-4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.从而数对(a,b)的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值.所以P(A)=.(Ⅱ)据题意,试验的全部结果所构成的区域为D={(a,b)|0≤a≤5,0≤b≤2},构成事件A的区域为A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.在平面直角坐标系中画出区域A、D,如图,其中区域D为矩形,其面积S(D)=5×2=10,区域A为直角梯形,其面积S(A)=.所以P(A)=.20、(1)见解析(2)【解题分析】分析:(1)根据题意,设法证明平面,即可证得平面平面;;(2)如图以为原点建立空间直角坐标系,利用空间向量求直线与平面所成角的正弦值.详解:(1)证明:因为为直角梯形,,又因为,所以,所以,所以,又因为,,所以平面,又因为平面,所以平面平面;(2)作于,因为,所以为中点,由(1)知平面平面,且平面平面,所以平面,所以为直线与平面所成的角,设,因为,,所以,如图以为原点建立空间直角坐标系,则,,,9分设平面法向量,则,取,则,所以平面一个法向量,设与平面所成角为,则,所以直线与平面所成角为正弦值为.点睛:本题考查直线与直线,直线与平面,平面与平面垂直等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数学结合思想,化归与转化思想21、(1);(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论