版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳红岭中学数学高二第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量满足,点在线段上,且的最小值为,则的最小值为()A. B. C. D.22.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于两点,直线与抛物线C交于点,若与直线的斜率的乘积为,则的最小值为()A.14 B.16 C.18 D.203.如图,已知函数的图象关于坐标原点对称,则函数的解析式可能是()A. B.C. D.4.已知函数是定义在上的偶函数,且,若函数有6个零点,则实数的取值范围是()A. B.C. D.5.祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知A,B是半径为的⊙O上的两个点,·=1,⊙O所在平面上有一点C满足|+|=1,则||的最大值为()A.+1 B.+1 C.2+1 D.+17.某中学在高二下学期开设四门数学选修课,分别为《数学史选讲》.《球面上的几何》.《对称与群》.《矩阵与变换》.现有甲.乙.丙.丁四位同学从这四门选修课程中选修一门,且这四位同学选修的课程互不相同,下面关于他们选课的一些信息:①甲同学和丙同学均不选《球面上的几何》,也不选《对称与群》:②乙同学不选《对称与群》,也不选《数学史选讲》:③如果甲同学不选《数学史选讲》,那么丁同学就不选《对称与群》.若这些信息都是正确的,则丙同学选修的课程是()A.《数学史选讲》 B.《球面上的几何》 C.《对称与群》 D.《矩阵与变换》8.从某企业生产的某种产品中随机抽取件,测量这些产品的一项质量指标,其频率分布表如下:质量指标分组频率则可估计这批产品的质量指标的众数、中位数为()A., B., C., D.,9.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩X~N(85,9),若已知,则从哈尔滨市高中教师中任选一位教师,他的培训成绩大于90的概率为()A.0.85 B.0.65 C.0.35 D.0.1510.双曲线的左右焦点分别为F1,F2,过F1的直线交曲线左支于A,B两点,△F2AB是以A为直角顶点的直角三角形,且∠AF2B=30°.若该双曲线的离心率为e,则e2=()A. B. C. D.11.设S为复数集C的非空子集,若对任意,都有,则称S为封闭集.下列命题:①集合为整数,i为虚数单位)}为封闭集;②若S为封闭集,则一定有;③封闭集一定是无限集;④若S为封闭集,则满足的任意集合T也是封闭集.其中真命题的个数为()A.1 B.2 C.3 D.412.已知,是两个向量,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程是_____________14.若,分别是椭圆:短轴上的两个顶点,点是椭圆上异于,的任意一点,若直线与直线的斜率之积为,则__________.15.函数若,且,则的取值范围是________.16.若,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(Ⅰ)讨论的单调性;(Ⅱ)当时,证明对于任意的成立.18.(12分)(江苏省南京师大附中高三高考考前模拟考试数学试题)已知函数f(x)=lnx-ax+a,a∈R.(1)若a=1,求函数f(x)的极值;(2)若函数f(x)有两个零点,求a的范围;(3)对于曲线y=f(x)上的两个不同的点P(x1,f(x1)),Q(x2,f(x2)),记直线PQ的斜率为k,若y=f(x)的导函数为f′(x),证明:f′()<k.19.(12分)设等差数列的前项和为,是等比数列,且,,,,是否存在,使,且?若存在,求的值.若不存在,则说明理由.20.(12分)实数m取什么值时,复数是:(1)实数;(2)纯虚数;(3)表示复数z的点在复平面的第四象限.21.(12分)对于给定的常数,设随机变量.(1)求概率.①说明它是二项式展开式中的第几项;②若,化简:;(2)设,求,其中为随机变量的数学期望.22.(10分)在平面直角坐标系中,曲线:,曲线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)求曲线,的极坐标方程;(2)曲线:(为参数,,),分别交,于,两点,当取何值时,取得最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
依据题目条件,首先可以判断出点的位置,然后,根据向量模的计算公式,求出的代数式,由函数知识即可求出最值.【题目详解】由于,说明点在的垂直平分线上,当是的中点时,取最小值,最小值为,此时与的夹角为,与的夹角为,∴与的夹角为,的最小值是4,即的最小值是2.故选D.【题目点拨】本题主要考查了平面向量有关知识,重点是利用数量积求向量的模.2、B【解题分析】
设出直线的斜率,得到的斜率,写出直线的方程,联立直线方程和抛物线方程,根据弦长公式求得的值,进而求得最小值.【题目详解】抛物线的焦点坐标为,依题意可知斜率存在且不为零,设直线的斜率为,则直线的斜率为,所以,有,有,,故,同理可求得.故,当且仅当时,等号成立,故最小值为,故选B.【题目点拨】本小题主要考查直线和抛物线的位置关系,考查直线和抛物线相交所得弦长公式,考查利用基本不等式求最小值,属于中档题.3、C【解题分析】
根据函数图像的对称性,单调性,利用排除法求解.【题目详解】由图象知,函数是奇函数,排除,;当时,显然大于0,与图象不符,排除D,故选C.【题目点拨】本题主要考查了函数的图象及函数的奇偶性,属于中档题.4、D【解题分析】
函数F(x)=f(x)﹣m有六个零点等价于当x>0时,函数F(x)=f(x)﹣m有三个零点,即可即m=f(x)有3个不同的解,求出在每一段上的f(x)的值域,即可求出m的范围.【题目详解】函数f(x)是定义在R上的偶函数,函数F(x)=f(x)﹣m有六个零点,则当x>0时,函数F(x)=f(x)﹣m有三个零点,令F(x)=f(x)﹣m=0,即m=f(x),①当0<x<2时,f(x)=x﹣x2=﹣(x﹣)2+,当x=时有最大值,即为f()=,且f(x)>f(2)=2﹣4=﹣2,故f(x)在[0,2)上的值域为(﹣2,],②当x≥2时,f(x)=<0,且当x→+∞,f(x)→0,∵f′(x)=,令f′(x)==0,解得x=3,当2≤x<3时,f′(x)<0,f(x)单调递减,当x≥3时,f′(x)≥0,f(x)单调递增,∴f(x)min=f(3)=﹣,故f(x)在[2,+∞)上的值域为[﹣,0),∵﹣>﹣2,∴当﹣<m<0时,当x>0时,函数F(x)=f(x)﹣m有三个零点,故当﹣<m<0时,函数F(x)=f(x)﹣m有六个零点,当x=0时,函数有5个零点.故选D.【题目点拨】(1)本题主要考查利用导数研究函数的单调性,考查函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答函数的零点问题常用的有方程法、图像法和方程+图像法.本题利用的就是方程+图像法.5、A【解题分析】分析:利用祖暅原理分析判断即可.详解:设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.如果截面面积恒相等,那么这两个几何体的体积一定相等,根据祖暅原理可知,p是q的充分不必要条件.故选:A.点睛:本题考查满足祖暅原理的几何体的判断,是基础题,解题时要认真审查,注意空间思维能力的培养.6、A【解题分析】
先由题意得到,根据向量的数量积求出,以O为原点建立平面直角坐标系,设A(,)得到点B坐标,再设C(x,y),根据点B的坐标,根据题中条件,即可求出结果.【题目详解】依题意,得:,因为,所以,=1,得:,以O为原点建立如下图所示的平面直角坐标系,设A(,),则B(,)或B(,)设C(x,y),当B(,)时,则=(+-x,+-y)由|+|=1,得:=1,即点C在1为半径的圆上,A(,)到圆心的距离为:=||的最大值为+1当B(,)时,结论一样.故选A【题目点拨】本题主要考查向量模的计算,熟记向量的几何意义,以及向量模的计算公式,即可求解,属于常考题型.7、D【解题分析】
列举出所有选择可能,然后根据三个信息,确定正确的选项.【题目详解】个同学,选门课,各选一门且不重复的方法共种,如下:种类甲乙丙丁1《数学史选讲》《球面上的几何》《对称与群》《矩阵与变换》2《数学史选讲》《球面上的几何》《矩阵与变换》《对称与群》3《数学史选讲》《对称与群》《球面上的几何》《矩阵与变换》4《数学史选讲》《对称与群》《矩阵与变换》《球面上的几何》5《数学史选讲》《矩阵与变换》《球面上的几何》《对称与群》6《数学史选讲》《矩阵与变换》《对称与群》《球面上的几何》7《球面上的几何》《数学史选讲》《对称与群》《矩阵与变换》8《球面上的几何》《数学史选讲》《矩阵与变换》《对称与群》9《球面上的几何》《对称与群》《数学史选讲》《矩阵与变换》10《球面上的几何》《对称与群》《矩阵与变换》《数学史选讲》11《球面上的几何》《矩阵与变换》《对称与群》《数学史选讲》12《球面上的几何》《矩阵与变换》《数学史选讲》《对称与群》13《对称与群》《数学史选讲》《球面上的几何》《矩阵与变换》14《对称与群》《数学史选讲》《矩阵与变换》《球面上的几何》15《对称与群》《球面上的几何》《数学史选讲》《矩阵与变换》16《对称与群》《球面上的几何》《矩阵与变换》《数学史选讲》17《对称与群》《球面上的几何》《数学史选讲》《矩阵与变换》18《对称与群》《球面上的几何》《矩阵与变换》《数学史选讲》19《矩阵与变换》《数学史选讲》《对称与群》《球面上的几何》20《矩阵与变换》《数学史选讲》《球面上的几何》《对称与群》21《矩阵与变换》《球面上的几何》《对称与群》《矩阵与变换》22《矩阵与变换》《球面上的几何》《矩阵与变换》《对称与群》23《矩阵与变换》《对称与群》《数学史选讲》《球面上的几何》24《矩阵与变换》《对称与群》《球面上的几何》《数学史选讲》满足三个信息都正确的,是第种.故本小题选D.【题目点拨】本小题主要考查分析与推理,考查列举法,属于基础题.8、C【解题分析】
根据频率分布表可知频率最大的分组为,利用中点值来代表本组数据可知众数为;根据中位数将总频率分为的两部分,可构造方程求得中位数.【题目详解】根据频率分布表可知,频率最大的分组为众数为:设中位数为则,解得:,即中位数为:本题正确选项:【题目点拨】本题考查利用样本的数据特征估计众数和中位数的问题,关键是明确众数和中位数的概念,掌握用样本估计总体的方法.9、D【解题分析】
先求出,再求出培训成绩大于90的概率.【题目详解】因为培训成绩X~N(85,9),所以2×0.35=0.7,所以P(X>90)=,所以培训成绩大于90的概率为0.15.故答案为:D.【题目点拨】(1)本题主要考查正态分布,意在考查学生对该知识的掌握水平.(2)解答正态分布问题,不要死记硬背,要根据函数的图像和性质解答.10、D【解题分析】
设,根据是以为直角顶点的直角三角形,且,以及双曲线的性质可得,再根据勾股定理求得的关系式,即可求解.【题目详解】由题意,设,如图所示,因为是以为直角顶点的直角三角形,且,由,所以,由,所以,所以,即,所以,所以,,在直角中,,即,整理得,所以,故选D.【题目点拨】本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)..11、B【解题分析】
由题意直接验证①的正误;令x=y可推出②是正确的;举反例集合S={0}判断③错误;S={0},T={0,1},推出﹣1不属于T,判断④错误.【题目详解】解:由a,b,c,d为整数,可得(a+bi)+(c+di)=(a+c)+(b+d)i∈S;(a+bi)﹣(c+di)=(a﹣c)+(b﹣d)i∈S;(a+bi)(c+di)=(ac﹣bd)+(bc+ad)i∈S;集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集,①正确;当S为封闭集时,因为x﹣y∈S,取x=y,得0∈S,②正确;对于集合S={0},显然满足所有条件,但S是有限集,③错误;取S={0},T={0,1},满足S⊆T⊆C,但由于0﹣1=﹣1不属于T,故T不是封闭集,④错误.故正确的命题是①②,故选B.【题目点拨】本题是新定义题,考查对封闭集概念的深刻理解,对逻辑思维能力的要求较高.12、B【解题分析】分析:先化简已知条件,再利用充分条件必要条件的定义判断.详解:由题得,所以,所以或或,所以或或.因为或或是的必要非充分条件,所以“”是“”的必要非充分条件.故答案是:B.点睛:(1)本题主要考查充分条件和必要条件,考查向量的数量积,意在考查学生对这些知识的掌握水平和分析推理能力.(2)判定充要条件常用的方法有定义法、集合法、转化法,本题利用的是集合法.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求导函数,确定曲线在处的切线斜率,从而可求切线方程.【题目详解】求导函数可得y,
当时,y,
∴曲线在点处的切线方程为
即答案为.【题目点拨】本题考查导数的几何意义,考查切线方程,属于基础题.14、2【解题分析】
设点坐标为,则.由题意得,解得.答案:2点睛:求椭圆离心率或其范围的方法(1)根据题意求出的值,再由离心率的定义直接求解.(2)由题意列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标等.15、【解题分析】
设,用表示,然后计算的范围,再次代入分段函数,即可求解,得到答案.【题目详解】设,作出函数的图象,由图象可得时,由,解得,由,解得,则,因为,则,设,则,此时,所以的取值范围是.【题目点拨】本题主要考查了分段函数的应用,以及二次函数的图象与性质的应用,其中解答中作出函数的图象,结合函数的图象,列出的关系式,求得的取值范围是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.16、84.【解题分析】分析:根据原式右边的展开情况可将原式左边写成:然后根据二项式定理展开求(x-1)3的系数即可.详解:由题可得:,故根据二项式定理可知:故答案为84.点睛:本题考查二项式定理的运用,注意运用变形和展开式的通项公式,考查方程思想和运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析【解题分析】试题分析:(Ⅰ)求的导函数,对a进行分类讨论,求的单调性;(Ⅱ)要证对于任意的成立,即证,根据单调性求解.试题解析:(Ⅰ)的定义域为;.当,时,,单调递增;,单调递减.当时,.(1),,当或时,,单调递增;当时,,单调递减;(2)时,,在内,,单调递增;(3)时,,当或时,,单调递增;当时,,单调递减.综上所述,当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增.(Ⅱ)由(Ⅰ)知,时,,,令,.则,由可得,当且仅当时取得等号.又,设,则在单调递减,因为,所以在上存在使得时,时,,所以函数在上单调递增;在上单调递减,由于,因此,当且仅当取得等号,所以,即对于任意的恒成立。【考点】利用导函数判断函数的单调性,分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错误百出.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.18、(1)见解析(2)(3)见解析【解题分析】分析:(1)求极值可先求导分析函数的单调区间从而确定极值点求极值;(2)由(1)可知当a≤0时,f(x)在(0,+∞)上单调增,不可能有两个零点;故只需讨论当a>0时的零点情况,当a>0时,函数有极大值,令(x>0),求导分析单调性结合零点定理进行证明即可;(3)由斜率计算公式得,而,将看成一个整体构造函数(),分析其最大值即可.解:(1),,当时,,在上单调递增,无极值;当时,,在上单调递增;,在上单调递减,函数有极大值,无极小值.(2)由(1)可知当a≤0时,f(x)在(0,+∞)上单调增,不可能有两个零点;当a>0时,函数有极大值,令(x>0),,,,在(0,1)上单调递减;,,在(1,+∞)上单调递增,函数有最小值.要使若函数有两个零点时,必须满足,下面证明时,函数有两个零点.因为,所以下面证明还有另一个零点.①当时,,,令(),,在上单调递减,,则,所以在上有零点,又在上单调递减,所以在上有惟一零点,从而有两个零点.②当时,,,易证,可得,所以在上有零点,又在上单调递减,所以在上有惟一零点,从而有两个零点.综上,的范围是.(3)证明:,,又,,不妨设0<x2<x1,t=,则t>1,则.令(),则,因此h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0.又0<x2<x1,所以x1-x2>0,所以f′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场部年终工作总结工作计划课件模板
- 2024年度二手电脑交易合同书2篇
- 2024年磨豆机行业政策分析:磨豆机行业标准提升产品质量
- 赞美母爱的力量
- 二零二四年度城市轨道交通建设项目施工合同3篇
- 二零二四年度版权许可使用合同标的及使用期限规定3篇
- 二零二四年度体育运动器材采购与销售合同3篇
- 片形吸虫病的临床护理
- 2024年度医疗器械维修保养合同2篇
- 二零二四年农产品订购合同3篇
- 炼钢厂安全生产教育培训课件
- 拼音四线三格A4打印版
- 机械专业职业生涯发展报告
- 生物技术为精准医疗注入新动力
- MBD数字化设计制造技术
- 部编版道德与法治五年级上册中华民族一家亲第一课时课件
- 2024年金融科技行业的数字化金融培训
- 医疗服务中的人文关怀
- 《商务经理区域》课件
- 急诊护理人文关怀标题课件
- 家校携手家校共育家长会
评论
0/150
提交评论