版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省白银市景泰县2024届数学高二下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“中国梦”的英文翻译为“”,其中又可以简写为,从“”中取6个不同的字母排成一排,含有“”字母组合(顺序不变)的不同排列共有()A.360种 B.480种 C.600种 D.720种2.中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有()A.18种 B.36种 C.72种 D.144种3.己知集合,,若,则实数的取值范围_______.A. B. C. D.4.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为,则甲获胜的概率为().A. B.C. D.5.在△ABC中,,,,则角B的大小为()A. B. C. D.或6.已知函数,当取得极值时,x的值为()A. B. C. D.7.若,,,则实数,,的大小关系为()A. B. C. D.8.若不等式对一切恒成立,则的取值范围是()A. B.C. D.9.函数则函数的零点个数是()A. B. C. D.10.设满足约束条件,若,且的最大值为,则()A. B. C. D.11.用秦九韶算法求次多项式,当时,求需要算乘方、乘法、加法的次数分别为()A. B. C. D.12.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=116x2(0≤x≤2)(12)x(x>2),若关于x的方程[f(xA.(-∞,-C.(-12二、填空题:本题共4小题,每小题5分,共20分。13.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的总数为_______.14.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为____.15.若在展开式中,若奇数项的二项式系数之和为,则含的系数是_____________.16.函数(,均为正数),若在上有最小值10,则在上的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值.(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)①②③评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望.18.(12分)已知函数.(1)若函数是偶函数,求的值;(2)若函数在上,恒成立,求的取值范围.19.(12分)在极标坐系中,已知圆的圆心,半径(1)求圆的极坐标方程;(2)若,直线的参数方程为(t为参数),直线交圆于两点,求弦长的取值范围.20.(12分)已知函数.(1)求函数的单调区间;(2)求证:.21.(12分)设函数,.(1)若函数f(x)在处有极值,求函数f(x)的最大值;(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;22.(10分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的时间/分钟总人数203644504010将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(Ⅰ)请根据上述表格中的统计数据填写下面的列联表;课外体育不达标课外体育达标合计男女20110合计(Ⅱ)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式,其中.0.250.150.100.050.0250.0100.0050.0011.3232.0722.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】从其他5个字母中任取4个,然后与“”进行全排列,共有,故选B.2、D【解题分析】
由排列、组合及简单的计数问题得:由题意可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,再相乘得解.【题目详解】由题意“乐”与“书”不能相邻,“射”和“御”要相邻,可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,由于是分步进行,所以共有种,故选:D.【题目点拨】本题考查排列、组合及简单计数问题,根据问题选择合适的方法是关键,此类问题常见的方法有元素优先法、捆绑法、插空法等,本题属于中等题.3、B【解题分析】
首先解出集合,若满足,则当时,和恒成立,求的取值范围.【题目详解】,,即当时,恒成立,即,当时恒成立,即,而是增函数,当时,函数取得最小值,且当时,恒成立,,解得:综上:.故选:B【题目点拨】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.4、C【解题分析】
先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【题目详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为,若前两局都是甲赢,所求概率为,因此,甲获胜的概率为,故选C.【题目点拨】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.5、A【解题分析】
首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【题目详解】在△ABC中有,所以,所以,又因为,所以,所以,因为,,所以由正弦定理得,因为,所以。所以选择A【题目点拨】本题主要考查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。6、B【解题分析】
先求导,令其等于0,再考虑在两侧有无单调性的改变即可【题目详解】解:,,的单调递增区间为和,减区间为,在两侧符号一致,故没有单调性的改变,舍去,故选:B.【题目点拨】本题主要考查函数在某点取得极值的性质:若函数在取得极值.反之结论不成立,即函数有,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.7、A【解题分析】
利用幂指对函数的单调性,比较大小即可.【题目详解】解:,,,∴,故选:A【题目点拨】本题考查了指对函数的单调性及特殊点,考查函数思想,属于基础题.8、C【解题分析】
本题是通过x的取值范围推导出a的取值范围,可先将a与x分别放于等式的两边,在通过x的取值范围的出a的取值范围。【题目详解】,因为所以所以,解得【题目点拨】本题主要考察未知字母的转化,可以先将需要求解的未知数和题目已给出未知数区分开来,再进行求解。9、A【解题分析】
通过对式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【题目详解】函数的零点即方程和的根,函数的图象如图所示:由图可得方程和共有个根,即函数有个零点,故选:A.【题目点拨】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10、B【解题分析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解代入目标函数得答案.详解:由约束条件作出可行域如图:化目标函数为,由图可知,当直线过B时,直线在y轴上的截距最小,即z最大,联立,解得,,解得.故选:B.点睛:线性规划中的参数问题及其求解思路(1)线性规划中的参数问题,就是已知目标函数的最值或其他限制条件,求约束条件或目标函数中所含参数的值或取值范围的问题.(2)求解策略:解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值.11、D【解题分析】求多项式的值时,首先计算最内层括号内一次多项式的值,即然后由内向外逐层计算一次多项式的值,即..….这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.∴对于一个n次多项式,至多做n次乘法和n次加法故选D.12、B【解题分析】
根据题意,由函数f(x)的解析式以及奇偶性分析可得f(x)的最小值与极大值,要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,转化为t2+at+b=0必有两个根【题目详解】根据题意,当x≥0时,f(x)=1f(x)在(0,2)上递增,在(2,+∞)上递减,当x=2时,函数当x=0时,函数f(x)取得最小值0,又由函数为偶函数,则f(x)在(-∞,-2)上递增,在当x=-2时,函数f(x)取得极大值14当x=0时,函数f(x)取得最小值0,要使关于x的方程[f(x)]设t=f(x),则t2+at+b=0必有两个根t1且必有t1=14,y=0<t2<14,y关于x的方程[f(x)]可得1又由-a=t则有-12<a<-【题目点拨】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数y=f(x)-g(x)的零点⇔函数y=f(x)-g(x)在x轴的交点⇔方程f(x)-g(x)=0的根⇔函数y=f(x)与y=g(x)的交点.二、填空题:本题共4小题,每小题5分,共20分。13、30种【解题分析】
对发言的3人进行讨论,一类是3个中有来自甲企业,一类是3人中没有来自甲企业.【题目详解】(1)当发言的3人有来自甲企业,则共有:;(2)当发言的3人没有来自甲企业,则共有:;所以可能情况的总数为种.【题目点拨】本题考查分类与分步计数原理,解题的关键在于对3个发言人来自企业的讨论,即有来自甲和没有来自甲.14、【解题分析】试题分析:总的数对有,满足条件的数对有3个,故概率为考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式15、【解题分析】
由题意可知,奇数项的二项式系数之和为,求出,然后求出展开式的通项,利用的指数为,求出参数的值,然后将参数的值代入通项,即可求出含项的系数.【题目详解】由题意可知,奇数项的二项式系数之和为,解得,展开式的通项为,令,得,因此,展开式中含的系数为.故答案为.【题目点拨】本题考查二项展开式中奇数项系数和的问题,同时也考查了二项展开式中指定项系数的求解,一般利用展开式通项来进行计算,考查运算求解能力,属于中等题.16、【解题分析】分析:将函数变形得到函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,再根据函数值的对称性得到结果.详解:,可知函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,故在上取得的最大值为故答案为:-4.点睛:这个题目考查了函数的奇偶性,奇函数关于原点中心对称,在对称点处分别取得最大值和最小值;偶函数关于y轴对称,在对称点处的函数值相等,中经常利用函数的这些性质,求得最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不满足至少两个不等式,该生产线需检修;(2)见解析.【解题分析】分析:(1)根据频率分布直方图得出X落在上的概率,从而得出结论;(2)根据题意,的可能值为:0,1,2,分别求出对应的概率即可.详解:(1)由题意知,由频率分布直方图得:不满足至少两个不等式,该生产线需检修.(2)由(1)知:任取一件是次品的概率为:任取两件产品得到次品数的可能值为:0,1,2则的分布列为:012(或)点睛:本题考查了频率分布直方图,离散型随机变量的分布列,属于中档题.18、(1);(2)【解题分析】
(1)利用偶函数的定义判断得解;(2)对x分三种情况讨论,分离参数求最值即得实数k的取值范围.【题目详解】(1)由题得,由于函数g(x)是偶函数,所以,所以k=2.(2)由题得在上恒成立,当x=0时,不等式显然成立.当,所以在上恒成立,因为函数在上是减函数,所以.当时,所以在上恒成立,因为函数在上是减函数,在上是增函数,所以.综合得实数k的取值范围为.【题目点拨】本题主要考查函数的奇偶性的判断,考查函数的单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(3)ρ2﹣2ρ(cosθ+sinθ)﹣3=2(2)[2,2)【解题分析】
(3)极坐标化为直角坐标可得C(3,3),则圆C的直角坐标方程为(x﹣3)2+(y﹣3)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣3=2.(2)联立直线的参数方程与圆的直角坐标方程可得t2+2t(cosα+sinα)﹣3=2.结合题意和直线参数的几何意义讨论可得弦长|AB|的取值范围是[2,2).【题目详解】(3)∵C(,)的直角坐标为(3,3),∴圆C的直角坐标方程为(x﹣3)2+(y﹣3)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣3=2.(2)将代入圆C的直角坐标方程(x﹣3)2+(y﹣3)2=3,得(3+tcosα)2+(3+tsinα)2=3,即t2+2t(cosα+sinα)﹣3=2.∴t3+t2=﹣2(cosα+sinα),t3•t2=﹣3.∴|AB|=|t3﹣t2|==2.∵α∈[2,),∴2α∈[2,),∴2≤|AB|<2.即弦长|AB|的取值范围是[2,2).【题目点拨】本题主要考查直角坐标方程与极坐标方程的互化,直线参数方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.20、(1)在,上单调递增,在上单调递减;(2)证明见解析.【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024绿化带杂草管理协议样本
- 2024年适用租车服务协议综合范例
- 2024年工程项目食堂供应承包协议
- 2024年土建工程协议示范文本
- 2024在线支付安全规范SET协议
- 2024年个人贷款协议模板大全2
- 医生聘用合同的岗位职责
- 2024年师徒合作协议范本下载
- 2024年度西安二手房销售协议模板
- 2024年金融领域反担保协议参考样式
- 期中试卷(试题)-2024-2025学年三年级上册数学青岛版
- 期中押题卷(试题)-2024-2025学年数学六年级上册北师大版
- 期中模拟(1-3单元)(试题)-2024-2025学年六年级上册数学苏教版
- 统编版2024年新版道德与法治七年级上册第二单元《成长的时空》单元整体教学设计
- 点亮文明 课件 2024-2025学年苏少版(2024)初中美术七年级上册
- 国开2024年秋《机电控制工程基础》形考任务3答案
- 中国高血压防治指南(2024年修订版)解读(总)
- 一+《展示国家工程++了解工匠贡献》(教学课件)-【中职专用】高二语文精讲课堂(高教版2023·职业模块)
- 结婚函调报告表
- 网站内容管理系统(CMS)
- 会同村土地综合整治项目规划剖析
评论
0/150
提交评论