版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省宜昌市高二数学第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,全集,则等于()A. B. C. D.2.学号分别为1,2,3,4的4位同学排成一排,若学号相邻的同学不相邻,则不同的排法种数为()A.2 B.4 C.6 D.83.现有4种不同品牌的小车各2辆(同一品牌的小车完全相同),计划将其放在4个车库中(每个车库放2辆则恰有2个车库放的是同一品牌的小车的不同放法共有()A.144种 B.108种 C.72种 D.36种4.已知函数的定义域为,且满足(是的导函数),则不等式的解集为()A. B. C. D.5.某人射击一次命中目标的概率为,且每次射击相互独立,则此人射击7次,有4次命中且恰有3次连续命中的概率为()A. B. C. D.6.()A. B. C.0 D.7.以下说法中正确个数是()①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;②欲证不等式成立,只需证;③用数学归纳法证明(,,在验证成立时,左边所得项为;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. B. C. D.8.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.9.已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定大于0 B.一定小于0C.等于0 D.正负都有可能10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为()A.7 B.8 C.9 D.1011.已知,是第四象限角,则()A. B. C. D.712.复数A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从二项分布,那么方差的值为__________.14.集合,若,则实数的值为__________.15.记为虚数集,设,则下列类比所得的结论正确的是__________.①由,类比得②由,类比得③由,类比得④由,类比得16.已知定义在上的函数在导函数为,若,且当时,,则满足不等式的实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大型高端制造公司为响应《中国制造2025》中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:月份56789101112研发费用x(百万元)2361021131518产品销量与(万台)1122.563.53.54.5(1)根据数据可知y与x之间存在线性相关关系(ⅰ)求出y关于x的线性回归方程(系数精确到0.001);(ⅱ)若2018年6月份研发投人为25百万元,根据所求的线性回归方程估计当月产品的销量;(2)为庆祝该公司9月份成立30周年,特制定以下奖励制度:以z(单位:万台)表示日销量,,则每位员工每日奖励200元;,则每位员工每日奖励300元;,则每位员工每日奖励400元现已知该公司9月份日销量z(万台)服从正态分布,请你计算每位员工当月(按30天计算)获得奖励金额总数大约多少元.参考数据:,.参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.若随机变量X服从正态分布,则,.18.(12分)设函数.(1)若曲线在点处与直线相切,求的值;(2)在(1)的条件下求函数的单调区间与极值点.19.(12分)一盒中放有的黑球和白球,其中黑球4个,白球5个.(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率;(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.20.(12分)在平面直角坐标系中,曲线:的参数方程是,(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)分别写出的极坐标方程和的直角坐标方程;(2)若射线的极坐标方程,且分别交曲线、于,两点,求.21.(12分)已知函数的图象过点.(1)求的解析式及单调区间;(2)求在上的最小值.22.(10分)甲将要参加某决赛,赛前,,,四位同学对冠军得主进行竞猜,每人选择一名选手,已知,选择甲的概率均为,,选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为.(1)求,的值;(2)设四位同学中选择甲的人数为,求的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先解出集合、,再利用补集和交集的定义可得出.【题目详解】因为,即或,所以,则,应选答案D.【题目点拨】本题考查集合的交集和补集的运算,同时也涉及了二次不等式与对数不等式的解法,考查运算求解能力,属于中等题.2、A【解题分析】
先排1,2,再将3、4插空,用列举法,即可得出结果.【题目详解】先排好1、2,数字3、4插空,排除相邻学号,只有2种排法:3142、1.故选A【题目点拨】本题主要考查计数原理,熟记概念即可,属于基础题型.3、C【解题分析】
根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,②、将取出的2个品牌的小车任意的放进2个车库中,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,分别分析每一步的情况数目,由分步计数原理计算可得答案.【题目详解】解:根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,有C42种取法,②、将取出的2个品牌的小车任意的放进2个车库中,有A42种情况,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,有1种情况,则恰有2个车库放的是同一品牌的小车的不同放法共有C42A42×1=72种,故选:C.点睛:能用分步乘法计数原理解决的问题具有以下特点:(1)完成一件事需要经过n个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.4、D【解题分析】
构造函数,利用导数分析函数在上的单调性,在不等式两边同时乘以化为,即,然后利用函数在上的单调性进行求解即可.【题目详解】构造函数,其中,则,所以,函数在定义域上为增函数,在不等式两边同时乘以得,即,所以,解得,因此,不等式的解集为,故选:D.【题目点拨】本题考查利用构造新函数求解函数不等式问题,其解法步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数分析函数的单调性,必要时分析该函数的奇偶性;(3)将不等式变形为,利用函数的单调性与奇偶性求解.5、B【解题分析】
由于射击一次命中目标的概率为,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【题目详解】因为射击7次有4次命中且恰有3次连续命中有种情况,所以所求概率为.选B.【题目点拨】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.6、D【解题分析】
定积分的几何意义是圆的个圆的面积,计算可得结果.【题目详解】定积分的几何意义是圆的个圆的面积,∴,故选D.【题目点拨】本题考查定积分,利用定积分的几何意义是解决问题的关键,属基础题7、B【解题分析】
①根据“至多有一个”的反设为“至少有两个”判断即可。②不等式两边平方,要看正负号,同为正不等式不变号,同为负不等式变号。③令代入左式即可判断。④整数并不属于大前提中的“有些有理数”【题目详解】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错欲证不等式成立,因为,故只需证,②错(,,当时,左边所得项为;③正确命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确综上所述:①②错③④正确故选B【题目点拨】本题考查推理论证,属于基础题。8、A【解题分析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.9、A【解题分析】因为f(x)在R上的单调增,所以由x2+x1>0,得x2>-x1,所以同理得即f(x1)+f(x2)+f(x3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行10、C【解题分析】
根据题意,设至少应抽出个产品,由题设条件建立不等式,由此能求出结果.【题目详解】解:要使这3个次品全部被抽出的概率不小于0.6,设至少抽出个产品,则基本事件总数为,要使这3个次品全部被抽出的基本事件个数为,由题设知:,所以,即,分别把A,B,C,D代入,得C,D均满足不等式,因为求的最小值,所以.故选:C.【题目点拨】本题考查概率的应用,解题时要认真审题,仔细解答,注意合理的进行等价转化.11、A【解题分析】
通过和差公式变形,然后可直接得到答案.【题目详解】根据题意,是第四象限角,故,而,故答案为A.【题目点拨】本题主要考查和差公式的运用,难度不大.12、C【解题分析】,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:随机变量服从二项分布,那么,即可求得答案.详解:随机变量服从二项分布,那么,即.故答案为:.点睛:求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果X~B(n,p),则用公式E(X)=np;D(X)=np(1-p)求解,可大大减少计算量.14、【解题分析】
根据并集运算法则计算得到答案.【题目详解】集合,若则故答案为:【题目点拨】本题考查了集合的并集运算,属于简单题.15、③【解题分析】分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对3个结论逐一进行分析,不难解答.详解:A:由a•b∈R,不能类比得x•y∈I,如x=y=i,则xy=﹣1∉I,故①不正确;B:由a2≥1,不能类比得x2≥1.如x=i,则x2<1,故②不正确;C:由(a+b)2=a2+2ab+b2,可类比得(x+y)2=x2+2xy+y2.故③正确;D:若x,y∈I,当x=1+i,y=﹣i时,x+y>1,但x,y是两个虚数,不能比较大小.故④错误故4个结论中,C是正确的.故答案为:③.点睛:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.16、【解题分析】分析:根据条件得到函数的对称性,结合函数的单调性和导数之间的关系判断函数的单调性,利用特殊值法进行求解即可.详解:由,得函数关于对称,当时,,即在上单调递减,不妨设,则不等式等价为,即,即,得,故实数的取值范围是.故答案为:.点睛:本题主要考查不等式的求解,利用条件判断函数的对称性和单调性,利用特殊值法是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(i);(ii)6.415万台;(2)7839.3元.【解题分析】分析:(1)(i)根据平均数公式可求出与的值,从而可得样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程;(ii)将代入所求回归方程,即可的结果;(2)由题知9月份日销量(万台)服从正态分布,则,根据正态曲线的对称性求出各区间上的概率,进而可得结果.详解:(1)(i)因为所以,所以关于的线性回归方程为(ii)当时,(万台)(注:若,当时,(万台)第(1)小问共得5分,即扣1分)(2)由题知9月份日销量(万台)服从正态分布.则.日销量的概率为.日销量的概率为.日销量的概率为.所以每位员工当月的奖励金额总数为元点睛:求回归直线方程的步骤:①依据样本数确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18、(1);(2)详见解析【解题分析】【试题分析】(1)先对函数求导,再借助导数的几何意义建立方程组进行求解;(2)先对函数求导,再依据导数与函数单调性之间的关系进行分类求求出其单调区间和极值点:解:(1),∵曲线在点处与直线相切,∴;(2)∵,由,当时,,函数单调递增,当时,,函数单调递减,当时,,函数单调递增,∴此时是的极大值点,是的极小值点.19、(1)(2)【解题分析】
(1)先求从盒中同时摸出两个球时的总事件数,再求两球颜色恰好相同的事件数,最后根据古典概型概率公式求解;(2)先求从盒中摸出一个球,放回后再摸出一个球的总事件数,再求两球颜色恰好不同的事件数,最后根据古典概型概率公式求解.【题目详解】解:①②【题目点拨】本题考查古典概型概率,考查基本分析求解能力,属基础题20、(1):,:;(2).【解题分析】试题分析:(1)首先写出的直角坐标方程,再根据互化公式写出极坐标方程,和的直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北汽车工业学院《英语听力1》2021-2022学年第一学期期末试卷
- 肺源性心脏病的X线诊断
- 保护小手课件
- 中职护理礼仪教育课件
- 新闻宣传战略合作协议书(2篇)
- 施工安全协议书(2篇)
- 混凝土公司安全生产协议书
- 物业服务岗位职责培训
- 九年级上册物理课件下载
- 《如何带好创业团队》课件
- 高考评价体系对高考化学命题的影响与复习对策
- 互联网产品运营实战手册
- 江苏省环保集团有限公司招聘笔试题库2024
- 大学生国家安全教育学习通超星期末考试答案章节答案2024年
- 老年心房颤动诊治中国专家共识(2024)解读
- 新高考背景下2025届高三历史一轮复习策略讲座
- 个人无人机租赁协议书范本
- 陆上风电施工危险源辨识、评价、控制措施清单
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- 中国在线监测设备行业市场供需态势及未来趋势研判报告
- 休闲体育专业人才培养方案
评论
0/150
提交评论