版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届柳州市重点中学数学高二第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4 B.15x4 C.-20ix4 D.20ix42.设a,b∈R,则“a≥b”是“a>bA.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知,则下列不等式正确的是()A. B.C. D.4.设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.5.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=()A. B.C. D.6.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.7.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B.2 C. D.58.已知椭圆(为参数)与轴正半轴,轴正半轴的交点分别为,动点是椭圆上任一点,则面积的最大值为()A. B. C. D.9.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第20行从右往左数第1个数是()A.397 B.398 C.399 D.40010.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=11.已知平面向量,的夹角为,且,,则()A. B. C. D.12.函数在上取得最小值时,的值为().A.0 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13..若,且,则__________________.14.已知复数,则z的虚部为_____________;15.某射击运动员每次击中目标的概率为0.8,现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.16.若曲线上在点处的切线与直线垂直,则点的坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.18.(12分)已知,且.(1)求n的值;(2)求的值.19.(12分)(江苏省南通市高三最后一卷---备用题数学试题)已知函数,其中.(1)当时,求函数处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.21.(12分)在直角坐标系xOy中,已知倾斜角为α的直线l过点A(2,1).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ=2sinθ,直线l与曲线C分别交于P,Q两点.(1)写出直线l的参数方程和曲线C的直角坐标方程.(2)求|AP|•|AQ|的值.22.(10分)已知函数,对任意的,满足,其中,为常数.(1)若的图象在处的切线经过点,求的值;(2)已知,求证:;(3)当存在三个不同的零点时,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:二项式(x+i)6的展开式的通项为Tr+1=C6rx6-ri【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式(x+i)6可以写为(i+x)6,则其通项为C6ri2、D【解题分析】
利用特殊值来得出“a≥b”与“a>b【题目详解】若a=b=3,则a≥b,但a>b若a=2,b=-3,a>b成立,但a≥b因此,“a≥b”是“a>b”的既不充分也不必要条件,故选:D【题目点拨】本题考查充分必要条件的判断,常用集合的包含关系来进行判断,也可以利用特殊值以及逻辑推证法来进行判断,考查逻辑推理能力,属于中等题。3、C【解题分析】
考虑到中不等号方向,先研究C,D中是否有一个正确。构造函数是增函数,可得当时,有,所以作差,,对可分类,和【题目详解】令,显然单调递增,所以当时,有,所以另一方面因为所以,当时,,当时,(由递增可得),∴,C正确。故选:C。【题目点拨】本题考查判断不等式是否成立,考查对数函数的性质。对于不等式是否成立,有时可用排除法,即用特例,说明不等式不成立,从而排除此选项,一直到只剩下一个正确选项为止。象本题中有两个选项结论几乎相反(或就是相反结论时),可考虑先判断这两个不等式中是否有一个为真。如果这两个都为假,再考虑两个选项。4、D【解题分析】分析:由已知求得m,画出A表示的平面区域和满足ab>1表示的平面区域,求出对应的面积比即可得答案.详解:由题意,s=,∴m==,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影==(x﹣lnx)=e﹣1﹣lne+ln1=e﹣1.所求的概率为P=,故答案为:D.点睛:(1)本题主要考查几何概型,考查定积分和二项式定理,意在考查学生对这些知识的掌握水平和分析推理能力.(1)解答本题的关键是利用定积分求阴影部分的面积.5、A【解题分析】
这是求小赵独自去一个景点的前提下,4
个人去的景点不相同的概率,求出相应基本事件的个数,按照公式计算,即可得出结论.【题目详解】小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有种,即n(AB)=24,.故选:A【题目点拨】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.6、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.7、C【解题分析】
设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【题目详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选C.【题目点拨】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.8、B【解题分析】分析:根据椭圆的方程算出A(4,1)、B(1,3),从而得到|AB|=5且直线AB:3x+4y﹣12=1.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=|sin﹣1|,结合三角函数的图象与性质算出dmax=(),由此结合三角形面积公式,即可得到△PAB面积的最大值.详解:由题得椭圆C方程为:,∴椭圆与x正半轴交于点A(4,1),与y正半轴的交于点B(1,3),∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[1,2π])∴点P到直线AB:3x+4y﹣12=1的距离为d==|sin﹣1|,由此可得:当θ=时,dmax=()∴△PAB面积的最大值为S=|AB|×dmax=6().点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)对于|sin﹣1|,不是sin=1时,整个函数取最大值,而应该是sin=-1,要看后面的“-1”.9、D【解题分析】
根据图中数字排列规律可知,第行共有项,且最后一项为,从而可推出第20行最后1个数的值,即可求解出答案.【题目详解】由三角形数组可推断出,第行共有项,且最后一项为,所以第20行,最后一项为1.故答案选D.【题目点拨】本题主要考查归纳推理的能力,归纳推理是由特殊到一般,由具体到抽象的一种推理形式,解题时,要多观察实验,对有限的资料进行归纳整理,提出带有规律性的猜想.10、A【解题分析】
设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【题目详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.【题目点拨】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.11、C【解题分析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.12、D【解题分析】
根据三角函数的单调性分析求解即可.【题目详解】当时,.根据正弦函数的性质可知,当,即时,取得最小值.故选:D【题目点拨】本题主要考查了三角函数的最值问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
首先求出函数的导数,再将代入导数,即可求出的值.【题目详解】
故答案为1.【题目点拨】本题考查了导数的运算,要准确掌握求导公式,对于简单题要细心.属于基础题.14、-3【解题分析】
先由除法法则计算出,再写出它的虚部【题目详解】,其虚部为-3。故答案为:-3。【题目点拨】本题考查复数的除法运算,考查复数的概念,属于基础题。15、0.75【解题分析】
根据随机模拟的方法,先找到20组数据中至少含有2,3,4,5,6,7,8,9中的3个数字的组数,然后根据古典概型求出概率.【题目详解】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次击中3次的有:7527,0293,9857,0347,4373,8636,6947,4698,6233,2616,8045,3661,9597,7424,4281,共15组随机数,所以所求概率为,故答案为0.75.【题目点拨】本题考查随机模拟的应用,考查理解能力和运用能力,解题时读懂题意是解题的关键,然后在此基础上确定基本事件总数和所求概率的事件包含的基本事件的个数,再根据古典概型的概率公式求解.16、【解题分析】
设切点,求得的导数,可得切线的斜率,由两直线垂直的条件可得,即为点的坐标.【题目详解】设切点,的导数为,可得切线的斜率为,由切线与直线垂直,可得,解得,即.故答案为:【题目点拨】本题考查了导数的几何意义以及直线垂直斜率之间的关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)求出第一个等边圆柱的体积,设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,进一步求得第个等边圆柱的体积,作比可得这些等边圆柱的体积从大到小排成一个等比数列;(2)由这些等边圆柱的体积之和为原来圆锥体积的可得与的关系,则答案可求.【题目详解】(1)证明:如图,设圆锥的底面半径为,高为,内接等边圆柱的底面半径为,则由三角形相似可得:,可得.其体积.设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,再设第个等边圆柱的底面半径为,则其外接圆锥的底面半径为,高为,则第个等边圆柱的体积.为定值,则这些等边圆柱的体积从大到小排成一个以为首项,以为公比的等比数列;(2)解:原来圆锥的体积为,这些等边圆柱的体积之和为.由,得,.则最大的等边圆柱的体积为,圆锥的体积为,体积之比为.【题目点拨】本题考查圆柱、圆锥体积的求法,考查等比数列的确定及所有项和公式的应用,是中档题.18、(1).(2)【解题分析】
(1)根据,即可求解,即可求得答案;(2)采用赋值法,令求出所有项系数的和,再令,求,即可求得答案.【题目详解】(1)整理可得:即,故解得:或(舍去)(2)由(1)令,可得令,可得可得【题目点拨】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,属于基础题.19、(1).(2).(3).【解题分析】
(1)首先将代入函数解析式,求出函数的导数,求出函数的切线的斜率,利用点斜式写出直线的方程,化简求得结果;(2)求出函数的导数,利用函数存在两个极值点,是方程的两个不等正根,韦达定理得到关系,将化为关于的函数关系式,利用导数求得结果;(3)将恒成立问题应用导数来研究,分类讨论,求得结果.【题目详解】(1)当时,,故,且,故所以函数在处的切线方程为(2)由,可得因为函数存在两个极值点,所以是方程的两个不等正根,即的两个不等正根为所以,即所以令,故,在上单调递增,所以故得取值范围是(3)据题意,对任意的实数恒成立,即对任意的实数恒成立.令,则①若,当时,,故符合题意;②若,(i)若,即,则,在上单调赠所以当时,,故符合题意;(ii)若,即,令,得(舍去),,当时,,在上单调减;当时,,在上单调递增,所以存在,使得,与题意矛盾,所以不符题意.③若,令,得当时,,在上单调增;当时,,在上单调减.首先证明:要证:,即要证:,只要证:因为,所以,故所以其次证明,当时,对任意的都成立令,则,故在上单调递增,所以,则所以当时,对任意的都成立所以当时,即,与题意矛盾,故不符题意,综上所述,实数的取值范围是.【题目点拨】该题考查的是有关应用导数研究函数的问题,在解题的过程中,涉及到的知识点有导数的几何意义,应用导数研究函数的极值点,应用导数研究不等式恒成立问题,涉及到的解题思想是分类讨论,注意思路清晰是解题的关键.20、(1)(2)【解题分析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【题目详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【题目点拨】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21、(1);x2+y2=2y;(2)3【解题分析】
(1)由直线的倾斜角与所过定点写出直线的参数方程,再利用极坐标与直角坐标的互化公式,求得曲线的直角坐标方程,即可得到答案.(2)将直线的参数方程代入曲线的方程,得到关于的一元二次方程,再由根与系数的关系,以及的几何意义,即可求解的值.【题目详解】(1)由题意知,倾斜角为α的直线l过点A(2,1,所以直线l的参数方程为(t为参数),因为ρ=2sinθ,所以ρ2=2ρsinθ,把y=ρsinθ,x2+y2=ρ2代入得x2+y2=2y,所以曲线C的直角坐标方程为x2+y2=2y.(2)将直线l的参数方程代入曲线C的方程,得t2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翼型浮袋市场发展现状调查及供需格局分析预测报告
- 2024年度汽车销售与购销合同
- 酒具市场需求与消费特点分析
- 2024年度供应链管理合同:供应链公司与生产企业之间的合作协议
- 2024年度文化旅游产业投资与运营合同
- 运动负重用沙袋市场发展预测和趋势分析
- 2024年度旅游服务合同(景点)
- 芳香精油市场发展现状调查及供需格局分析预测报告
- 2024年度品牌授权使用合同(含区域独家授权和违约责任)
- 2024年度住宅小区车位租赁合同范本
- 第四讲-元数据课件
- 北师大版二年级数学上册《秋游》教案及教学反思
- 商务英语听说-对外经济贸易大学中国大学mooc课后章节答案期末考试题库2023年
- 中学化学实验室管理制度
- 国开《人文英语1》单元自测unit1-8习题答案整理合集
- 仁爱版英语九年级上册Unit3Topic1SectionA说课稿
- 【安克创新企业管理创新策略研究开题报告3100字】
- 关于独身子女费发放新规定全文
- 当下的力量 当下的力量实践手册(白金版)(全集)
- 世界经济形势与政策论文2000字三篇
- 如鲲(山东)新材料生产基地钠盐技改扩产项目环评报告书
评论
0/150
提交评论