版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市潜山第二中学2024届数学高二第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线,过其焦点的直线与抛物线交于两点,则的最小值为()A.6 B. C.9 D.2.已知点P是双曲线上一点,若,则△的面积为()A. B. C.5 D.103.现有五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有()A.120种 B.5种 C.种 D.种4.已知函数,设,则A. B.C. D.5.已知函数的图像在点处的切线方程是,若,则()A. B. C. D.6.下面是关于复数(i为虚数单位)的四个命题:①对应的点在第一象限;②;③是纯虚数;④.其中真命题的个数为()A.1 B.2 C.3 D.47.双曲线x2A.23 B.2 C.3 D.8.定义域为的可导函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.9.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.10.已知命题p:∀x∈R,2x>0;q:∃x0∈R,x+x0=-1.则下列命题为真命题的是()A.p∧q B.(┐p)∧(┐q) C.(┐p)∧q D.p∧(┐q)11.已知焦点在轴上的双曲线的渐近线方程是,则该双曲线的离心率是()A. B. C. D.12.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的的值为()A.4 B.5 C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.14.如图,矩形中曲线的方程分别为,,在矩形内随机取一点,则此点取自阴影部分的概率为____.15.若,则______.16.已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用函数单调性的定义证明:函数在是减函数.18.(12分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,试用所学知识说明上述监控生产过程方法的合理性;附:若随机变量Z服从正态分布N(μ,),则P(μ-3σ<Z<μ+3σ)=0.9974,,.20.(12分)已知函数(为自然对数的底数).(1)求的单调区间;(2)是否存在正实数使得,若存在求出,否则说明理由;21.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标(,),直线l的极坐标方程为ρcos(θ-)=a,.(1)若点A在直线l上,求直线l的直角坐标方程;(2)圆C的参数方程为(为参数),若直线与圆C相交的弦长为,求的值.22.(10分)近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车,并对该电动汽车的电池使用情况进行了测试,其中剩余电量与行驶时间(单位:小时)的测试数据如下:如果剩余电量不足,则电池就需要充电.(1)从组数据中选出组作回归分析,设表示需要充电的数据组数,求的分布列及数学期望;(2)根据电池放电的特点,剩余电量与时间工满足经验关系式:,通过散点图可以发现与之间具有相关性.设,利用表格中的前组数据求相关系数,并判断是否有的把握认为与之间具有线性相关关系.(当相关系数满足时,则认为的把握认为两个变量具有线性相关关系);(3)利用与的相关性及前组数据求出与工的回归方程.(结果保留两位小数)附录:相关数据:,,,.前9组数据的一些相关量:合计相关公式:对于样本.其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:设直线方程为,联立方程组得出A,B两点坐标的关系,根据抛物线的性质得出关于A,B两点坐标的式子,使用基本不等式得出最小值.详解:抛物线的焦点,设直线方程为,联立方程组,得,设,则,,由抛物线的性质得,.故选:B.点睛:本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.2、C【解题分析】设,则:,则:,由勾股定理可得:,综上可得:则△的面积为:.本题选择C选项.点睛:(1)双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验.(2)利用定义解决双曲线上的点与焦点的距离有关问题时,弄清点在双曲线的哪支上.3、D【解题分析】
先计算每个同学的报名方法种数,利用乘法原理得到答案.【题目详解】A同学可以参加航模、机器人、网页制作三个兴趣小组,共有3种选择.同理BCDE四位同学也各有3种选择,乘法原理得到答案为D【题目点拨】本题考查了分步乘法乘法计数原理,属于简单题目.4、D【解题分析】
对函数求导,得出函数在上单调递减,利用中间值法比较、、的大小关系,利用函数的单调性得出、、三个数的大小关系.【题目详解】,,所以,函数在上单调递减,,,即,,则,函数在上单调递减,因此,,故选D.【题目点拨】本题考查函数值的大小比较,这类问题需要结合函数的单调性以及自变量的大小,其中单调性可以利用导数来考查,本题中自变量的结构不相同,可以利用中间值法来比较,考查推理能力,属于中等题.5、C【解题分析】
根据切线方程计算,,再计算的导数,将2代入得到答案.【题目详解】函数的图像在点处的切线方程是故答案选C【题目点拨】本题考查了切线方程,求函数的导数,意在考查学生的计算能力.6、B【解题分析】
求出z的坐标判断①;求出判断②;求得的值判断③;由两虚数不能进行大小比较判断④.【题目详解】∵,∴z对应的点的坐标为(1,1),在第一象限,故①正确;,故②错误;,为纯虚数,故③正确;∵两虚数不能进行大小比较,故④错误.∴其中真命题的个数为2个.故选:B.【题目点拨】本题考查复数的基本概念,考查复数的代数表示法及其几何意义,考查复数模的求法,是基础题.7、A【解题分析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线.8、C【解题分析】
构造函数,根据可知,得到在上单调递减;根据,可将所求不等式转化为,根据函数单调性可得到解集.【解答】令,则在上单调递减则不等式可化为等价于,即即所求不等式的解集为:本题正确选项:【题目点拨】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系.9、B【解题分析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.10、D【解题分析】分析:分别判断p,q的真假即可.详解:指数函数的值域为(0,+∞),对任意x∈R,y=2x>0恒成立,故p为真命题;x2+x+1=2+>0恒成立,不存在x0∈R,使x+x0=-1成立,故q为假命题,则p∧q,┐p为假命题,┐q为真命题,┐p∧┐q,┐p∧q为假命题,p∧┐q为真命题.故选:D.点睛:本题以命题的真假判断与应用为载体,考查了指数函数的性质与二次函数方面的知识.11、C【解题分析】分析:由题意,双曲线的焦点在轴上的双曲线的渐近线方程是,求得,利用离心率的公式,即可求解双曲线的离心率.详解:由题意,双曲线的焦点在轴上的双曲线的渐近线方程是,即,所以双曲线的离心率为,故选C.点睛:本题主要考查了双曲线的离心率的求解问题,其中熟记双曲线的标准方程和几何性质是解答的关键,着重考查了推理与运算能力.12、B【解题分析】
模拟程序运行,依次计算可得所求结果【题目详解】当,,时,,;当,,时,,;当,,时,,;当,,时,,;故选B【题目点拨】本题考查程序运算的结果,考查运算能力,需注意所在位置二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解.【题目详解】从5名男同学和2名女同学中选出3人,有种选法;选出的男女同学均不少于1名,有种选法;故选出的同学中男女生均不少于1名的概率:.【题目点拨】本题考查排列组合和古典概型.排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.14、【解题分析】
运用定积分可以求出阴影部分的面积,再利用几何概型公式求出在矩形内随机取一点,则此点取自阴影部分的概率.【题目详解】解:阴影部分的面积为,故所求概率为【题目点拨】本题考查了几何概型,正确运用定积分求阴影部分的面积是解题的关键.15、【解题分析】
利用组合数的性质公式可以得到两个方程,解方程即可求出的值.【题目详解】因为,所以有或.当时,,方程无实根;当时,,综上所述:故答案为:【题目点拨】本题考查了组合数的性质公式,考查了解方程的能力,属于基础题.16、[0,2)【解题分析】命题p:m<0,命题q:m<2.∵p与q一真一假,∴或解得0≤m<2.答案:[0,2).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明过程见解析.【解题分析】
按照单调性的定义进行证明,先设是上任意两个实数,则,然后用差比的方法,结合,比较出,这样就证明出函数在是减函数.【题目详解】设是上任意两个实数,则,,,所以有,因此函数在是减函数.【题目点拨】本题考查了用定义证明函数单调性,用差比的方法比较出的大小关系是解题的关键,一般在差比比较过程中,往往会用到因式分解、配方法、通分法等方法.18、(1)有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)分布列见解析.【解题分析】试题分析:(1)依题意得,则有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)由题意可得随机变量的所有可能取值为且,据此可得分布列,计算数学期望.试题解析:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”(2)从乙班分数段中抽人数分别为2,3,2依题意随机变量的所有可能取值为,则分布列:所以19、(1)P(X≥1)=0.0408,E(X)=0.0416(2)上述监控生产过程的方法是合理的,详见解析【解题分析】
(1)通过可求出,利用二项分布的期望公式计算可得结果.(2)由(1)知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理.【题目详解】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.【题目点拨】本题考查对正态分布的理解以及二项分布的期望公式,是一道一般难度的概率综合体.20、(1)单调递减区间是,单调递增区间为;(2)不存在,证明见解析.【解题分析】分析:(1)先求一阶导函数的根,求解或的解集,写出单调区间.(2)函数在上的单调性,和函数的对称性说明不存在详解:(1)函数的单调递减区间是,单调递增区间为.(2)不存在正实数使得成立,事实上,由(1)知函数在上递增,而当,有,在上递减,有,因此,若存在正实数使得,必有.令,令,因为,所以,所以为上的增函数,所以,即,故不存在正实数使得成立.点睛:方程的根、函数的零点、两个函数图像的交点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州石化职业技术大学《中国智慧》2023-2024学年第一学期期末试卷
- 江西科技职业学院《地理学科教学设计》2023-2024学年第一学期期末试卷
- 集宁师范学院《石油化工工艺》2023-2024学年第一学期期末试卷
- 湖南现代物流职业技术学院《海外市场调研与数据分析》2023-2024学年第一学期期末试卷
- 湖南工程学院应用技术学院《跨境电商概论》2023-2024学年第一学期期末试卷
- 衡水健康科技职业学院《风景园林建筑设计基础》2023-2024学年第一学期期末试卷
- 重庆幼儿师范高等专科学校《市场调查分析》2023-2024学年第一学期期末试卷
- 重庆健康职业学院《数字音视频技术》2023-2024学年第一学期期末试卷
- 浙江农业商贸职业学院《先进陶瓷材料》2023-2024学年第一学期期末试卷
- 郑州食品工程职业学院《自然地理学概论》2023-2024学年第一学期期末试卷
- 经典酒吧转让协议书范本(3篇)
- DB37-T 5026-2022《居住建筑节能设计标准》
- 抗菌药物合理应用PPT
- 《三角形的分类》-完整版课件
- 风力发电机组地基处理
- 护士聘用证明表下载
- 《中外资产评估准则》课件第2章 资产评估DNA透视
- 1986考研英语真题及答案解析
- 二重积分的概念
- PPK-CPK(自动生成)
- 热电偶、热电阻产品选型样本
评论
0/150
提交评论