广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市寮步宏伟中学2023年九年级数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.2 B.3 C.2 D.32.在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A. B. C. D.3.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正确的个数有A.1个 B.2个 C.3个 D.4个5.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20° B.30° C.45° D.60°6.以下列长度的线段为边,可以作一个三角形的是()A. B. C. D.7.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,AD=CD,则∠DAC的度数是()A.30° B.35° C.45° D.70°8.下列函数属于二次函数的是A. B.C. D.9.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A. B. C. D.10.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为.12.一辆汽车在行驶过程中,路程(千米)与时间(小时)之间的函数关系如图所示.当时,关于的函数解析式为,那么当时,关于的函数解析式为________.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.14.已知,则的值是_______.15.如图,在中,,,.将绕点逆时针旋转,使点落在边上的处,点落在处,则,两点之间的距离为__________;16.如图,在△ABC中,DE∥BC,,则=_____.17.关于的方程的一个根是,则它的另一个根是__________.18.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.三、解答题(共66分)19.(10分)如图,为了估算河的宽度,我们可以在河对岸选定一点,再在河的这一边选定点和点,使得,然后选定点,使,确定与的交点,若测得米,米,米,请你求出小河的宽度是多少米?20.(6分)某水果商场经销一种高档水果,原价每千克25元,连续两次涨价后每千克水果现在的价格为36元.(1)若每次涨价的百分率相同.求每次涨价的百分率;(2)若进价不变,按现价售出,每千克可获利15元,但该水果出现滞销,商场决定降价m元出售,同时把降价的幅度m控制在的范围,经市场调查发现,每天销售量(千克)与降价的幅度m(元)成正比例,且当时,.求与m的函数解析式;(3)在(2)的条件下,若商场每天销售该水果盈利元,为确保每天盈利最大,该水果每千克应降价多少元?21.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2),B(-4,-1),C(-4,-4).(1)画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2)将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.23.(8分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.24.(8分)计算:|1﹣|+(2019﹣50)0﹣()﹣225.(10分)计算:sin45°+2cos30°﹣tan60°26.(10分)小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.2、B【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数相等.3、D【分析】连接BD,根据圆周角定理得出∠ADC=30°,∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°,∠ADB=90°是解题的关键.4、C【详解】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故③选项正确;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选C.考点:二次函数图象与系数的关系.5、B【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.6、B【分析】根据三角形的三边关系定理逐项判断即可.【详解】A、,不满足三角形的三边关系定理,此项不符题意B、,满足三角形的三边关系定理,此项符合题意C、,不满足三角形的三边关系定理,此项不符题意D、,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了三角形的三边关系定理:任意两边之和大于第三边,熟记定理是解题关键.7、B【分析】连接BD,如图,利用圆周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,则∠ADC=110°,然后根据等腰三角形的性质和三角形内角和计算∠DAC的度数.【详解】解:连接BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8、A【分析】一般地,我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.【详解】由二次函数的定义可知A选项正确,B和D选项为一次函数,C选项为反比例函数.【点睛】了解二次函数的定义是解题的关键.9、D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.二、填空题(每小题3分,共24分)11、【分析】△ABC绕点O逆时针旋转一周需6秒,而2018=6×336+2,所以第2018秒时,点A旋转到点A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,然后通过解直角三角形求出A′H和OH即可得到A′点的坐标.【详解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒时,点A旋转到点B,如图,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案为(﹣,﹣).【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.12、【分析】将x=1代入得出此时y的值,然后设当1≤x≤2时,y关于x的函数解析式为y=kx+b,再利用待定系数法求一次函数解析式即可.【详解】解:∵当时0≤x≤1,y关于x的函数解析式为y=1x,

∴当x=1时,y=1.

又∵当x=2时,y=11,

设当1<x≤2时,y关于x的函数解析式为y=kx+b,将(1,1),(2,11)分别代入解析式得,,解得,所以,当时,y关于x的函数解析式为y=100x-2.故答案为:y=100x-2.【点睛】本题考查了一次函数的应用,主要利用了一次函数图象上点的坐标特征,待定系数法求一次函数解析式,比较简单.13、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14、【分析】由可设a=k,b=3k,代入中即可.【详解】解:∵,∴设a=k,b=3k,代入中,==.故答案为:.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.15、【分析】利用勾股定理算出AB的长,再算出BE的长,再利用勾股定理算出BD即可.【详解】∵AC=4,BC=3,∠C=90°,∴AB=5,∴EB=5-4=1,∴BD=.故答案为:.【点睛】本题考查勾股定理的应用,关键在于通过旋转找到等量关系.16、【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.17、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.18、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共66分)19、小河的宽度是210米.【分析】先证明△ABD∽△ECD,然后利用相似比计算出AB即可得到小河的宽度.【详解】∵,,∴,∴,∴,即,∴.答:小河的宽度是210米.【点睛】本题考查了相似三角形的应用:利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.20、(1)20%;(2)(3)商场为了每天盈利最大,每千克应降价7元【分析】(1)设每次涨价的百分率为x,根据题意列出方程即可;(2)根据题意列出函数表达式即可;(3)根据等量关系列出函数解析式,然后根据解析式的性质,求出最值即可.【详解】解:(1)设每次涨价的百分率为x,根据题意得:25(1+x)2=36,解得:(不合题意舍去)答:每次涨价的百分率20%;(2)设,把,代入得,∴k=30,∴y与m的函数解析式为;(3)依题有,∵抛物线的开口向下,对称轴为,∴当时,w随m的增大而增大,又,∴当时,每天盈利最大,答:商场为了每天盈利最大,每千克应降价7元.【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,根据题意得出等量关系是解题关键.21、(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.22、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【点睛】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.23、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′,使AC与AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论