版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省孙吴县第一中学2024届数学高二下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,则的元素的个数为()A. B. C. D.2.已知函数,则的解集为()A. B. C. D.3.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.4.如果f(n)∈N+),那么f(n+1)-f(n)等于()A. B. C. D.5.(2x-3y)9A.-1 B.512 C.-512 D.16.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.7.如图1是把二进制数化为十制数的一个程序框图,则判断框内应填入的条件是()A.B.C.D.否否开始是8.若(3x-1x)A.-5B.5C.-405D.4059.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.10.如图,设、两点在河的两岸,一测量者在的同侧河岸边选定一点,测出、的距离是,,,则、两点间的距离为()A. B. C. D.11.已知平面向量,则()A. B.3 C. D.512.已知是定义在上的可导函数,的图象如下图所示,则的单调减区间是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示是世界20个地区受教育程度的人口百分比与人均收入的散点图,样本点基本集中在一个条型区域,因此两个变量呈线性相关关系.利用散点图中的数据建立的回归方程为,若受教育的人口百分比相差10%,则其人均收入相差_________.14.某校高二成立3个社团,有4名同学,每人只选一个社团,恰有1个社团没有同学选,共有种不同参加方案(用数字作答).15.如图,在杨辉三角形中,斜线1的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前项和为,则__________.16.若正方体的表面积为,则它的外接球的表面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:(1)前三局比赛甲队领先的概率;(2)设本场比赛的局数为,求的概率分布和数学期望.(用分数表示)18.(12分)某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;师资力量(优秀)师资力量(非优秀)合计基础设施建设(优秀)基础设施建设(非优秀)合计(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.附:19.(12分)已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若,对任意都有恒成立,求实数的取值范围.20.(12分)已知复数满足:,且在复平面内对应的点位于第三象限.(I)求复数;(Ⅱ)设,且,求实数的值.21.(12分)已知等比数列an的前n项和Sn,满足S4(1)求数列an(2)设数列{bn}满足a1b1-a222.(10分)以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”,设椭圆的左顶点为,左焦点为,上顶点为,且满足,.(1)求椭圆及其“准圆"的方程;(2)若过点的直线与椭圆交于、两点,当时,试求直线交“准圆”所得的弦长;(3)射线与椭圆的“准圆”交于点,若过点的直线,与椭圆都只有一个公共点,且与椭圆的“准圆”分别交于,两点,试问弦是否为”准圆”的直径?若是,请给出证明:若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:分别求出A和B,再利用交集计算即可.详解:,,则,交集中元素的个数是5.故选:C.点睛:本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2、C【解题分析】
根据分段函数的表达式,讨论当和时,不等式的解,从而得到答案。【题目详解】因为,由,得:①或②;解①得;;解②得:;所以的解集为;故答案选C【题目点拨】本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想,属于中档题。3、D【解题分析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.4、D【解题分析】分析:直接计算f(n+1)-f(n).详解:f(n+1)-f(n)故答案为D.点睛:(1)本题主要考查函数求值,意在考查学生对该知识的掌握水平.(2)不能等于,因为前面还有项没有减掉.5、B【解题分析】
(a+b)n展开式中所有项的二项系数和为【题目详解】(a+b)n展开式中所有项的二项系数和为2(2x-3y)9的展开式中各项的二项式系数之和为2故答案选B【题目点拨】本题考查了二项系数和,属于基础题型.6、D【解题分析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.7、C【解题分析】略8、C【解题分析】由题设可得2n=32⇒n=5,则通项公式Tr+1=C5r9、A【解题分析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.10、A【解题分析】
利用三角形的内角和定理求出,再利用正弦定理即可求解.【题目详解】由三角形的内角和可得,在中,由正弦定理可得,所以,故选:A【题目点拨】本题考查了正弦定理在生活中的应用,需熟记正弦定理,属于基础题.11、A【解题分析】
先由的坐标,得到的坐标,进而可得向量的模.【题目详解】因为,所以,因此.故选A【题目点拨】本题主要考查向量的模,熟记向量的坐标表示即可,属于常考题型.12、B【解题分析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,,所以当时,,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.二、填空题:本题共4小题,每小题5分,共20分。13、31.93美元【解题分析】
设所受教育百分比分别为,且,利用回归方程计算即可.【题目详解】设所受教育百分比分别为,且根据回归方程为,收入相差大约为:
,
即受教育的人口百分比相差,则其人均收入相差约美元.
故答案为:31.93美元.【题目点拨】本题考查了线性回归方程的应用问题,属于中档题.14、42【解题分析】试题分析:若恰有1个社团没人选,则问题转化为4人选2个社团,且每人只选择一个社团,可转化为分组与分配问题,即。考点:排列组合的综合应用。15、361【解题分析】
将按照奇偶分别计算:当为偶数时,;当为奇数时,,计算得到答案.【题目详解】解法一:根据杨辉三角形的生成过程,当为偶数时,,当为奇数时,,,,,,,,解法二:当时,,当时,,【题目点拨】本题考查了数列的前N项和,意在考查学生的应用能力和解决问题的能力.16、【解题分析】
由正方体的外接球的直径与正方体的棱长之间的关系求解.【题目详解】由已知得正方体的棱长为,又因为正方体的外接球的直径等于正方体的体对角线的长,所以正方体的外接球的半径,所以外接球的表面积,故得解.【题目点拨】本题考查正方体的外接球,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解题分析】
(1)分为甲队胜三局和甲队胜二局两种情况,概率相加得到答案.(2)本场比赛的局数为有3,4,5三种情况,分别计算概率得到分布列,最后计算得到答案.【题目详解】解:(1)设“甲队胜三局”为事件,“甲队胜二局”为事件,则,,所以,前三局比赛甲队领先的概率为(2)甲队胜三局或乙胜三局,甲队或乙队前三局胜局,第局获胜甲队或乙队前四局胜局,第局获胜的分部列为:数学期望为【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和解决问题的能力.18、(1)见解析;(2)见解析.【解题分析】
(1)依题意求得n、a和b的值,填写列联表,计算K2,对照临界值得出结论;(2)由题意得到满足条件的(a,b),再计算ξ的分布列和数学期望值.【题目详解】(Ⅰ)依题意得,得由,得由得师资力量(优秀)师资力量(非优秀)基础设施建设(优秀)2021基础设施建设(非优秀)2039.因为,所以没有90﹪的把握认为“学校的基础设施建设”和“学校的师资力量”有关.(Ⅱ),,得到满足条件的有:,,,,故的分布列为1357故【题目点拨】本题主要考查了独立性检验和离散型随机变量的分布列与数学期望问题,属于中档题.19、(Ⅰ)(−∞,−5)∪(1,+∞);(Ⅱ)(0,6]【解题分析】
(Ⅰ)由题知当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义能求出不等式的解集.
(Ⅱ)由,对任意都有,只需f(x)的最小值大于等于的最大值即可,转化成函数最值问题建立不等关系式,由此能求出a的取值范围.【题目详解】(Ⅰ)∵函数,∴当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义:|x+3|+|x+1|>6可以看作数轴上的点x到点−3和点−1的距离之和大于6,则点x到点−3和点−1的中点O的距离大于3即可,∴点x在−5或其左边及1或其右边,即x<−5或x>1.∴不等式的解集为(−∞,−5)∪(1,+∞).(Ⅱ)∵,对任意都有,只需f(x)的最小值大于等于的最大值即可.由可得,,设,根据二次函数性质,,∴,解得,又,∴∴a的取值范围是(0,6].【题目点拨】本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求解,体现了函数与方程的思想.本题属于中等题.20、(Ⅰ)(Ⅱ)【解题分析】
(I)设,利用复数相等的概念求出复数z;(Ⅱ)先计算出,再求a的值.【题目详解】解;(Ⅰ)设,则,解得或(舍去)..(Ⅱ),,,.【题目点拨】本题主要考查复数的求法和复数的运算,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1)an【解题分析】
(1)将题目中的条件转化为首项和公比的式子,于是可得到通项公式;(2)通过条件先求出数列{bn}的通项,要想Tn【题目详解】解:(1)2SS所以a(2)当n=1时,a1当n≥2时,-1n+1将n=1代a1bbn当n≤5时,bn>0,当n≥6所以T【题目点拨】本题主要考查等比数列的通项公式,数列的最值问题,意在考查学生的基础知识,计算能力和分析能力,难度不大.22、(1);(2);(3)是准圆的直径,具体见解析【解题分析】
(1)根据所给条件可知,,根据面积公式可知,最后解方程组求解椭圆方程;(2)设直线为,与椭圆方程联立,,表示根与系数的关系,并且代入的数量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国头孢丙烯行业市场深度分析及发展趋势预测报告
- 2025年中国尾货服装行业市场全景评估及发展趋势研究预测报告
- 2025借款合同样式模板
- 2021-2026年中国桑菊感冒合剂市场全面调研及行业投资潜力预测报告
- 江苏瑞邦复合材料科技有限公司介绍企业发展分析报告模板
- 高频振网筛行业深度研究报告
- 2024山东移动电信服务市场前景及投资研究报告
- 2025年中国汉服行业市场全景监测及投资策略研究报告
- 2025年四氢双环戊二烯项目可行性研究报告
- 2025年硫化碱项目可行性研究报告
- 【MOOC期末】《形势与政策》(北京科技大学)期末慕课答案
- 营销专业安全培训
- 2024年度五星级酒店厨师团队管理与服务合同3篇
- 2024年医疗健康知识科普视频制作合同3篇
- 广东省广州市花都区2024年七年级上学期期末数学试题【附答案】
- 期末测试模拟练习 (含答案) 江苏省苏州市2024-2025学年统编版语文七年级上册
- 上海市徐汇区2024-2025学年高一语文下学期期末试题含解析
- 安全风险隐患举报奖励制度
- 江苏省苏州市2023-2024学年高三上学期期末考试 数学 含答案
- 线性代数知到智慧树章节测试课后答案2024年秋贵州理工学院
- 建筑幕墙工程检测知识考试题库500题(含答案)
评论
0/150
提交评论