2024届湖南省双峰县一中数学高二下期末检测试题含解析_第1页
2024届湖南省双峰县一中数学高二下期末检测试题含解析_第2页
2024届湖南省双峰县一中数学高二下期末检测试题含解析_第3页
2024届湖南省双峰县一中数学高二下期末检测试题含解析_第4页
2024届湖南省双峰县一中数学高二下期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省双峰县一中数学高二下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线的参数方程为:,且点在曲线上,则的取值范围是()A. B. C. D.2.已知随机变量服从正态分布,若,则()A.0.16 B.0.32 C.0.68 D.0.843.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=4.一个正方体的展开如图所示,点,,为原正方体的顶点,点为原正方体一条棱的中点,那么在原来的正方体中,直线与所成角的余弦值为()A. B. C. D.5.由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中()A.正方体的体积取得最大B.正方体的体积取得最小C.正方体的各棱长之和取得最大D.正方体的各棱长之和取得最小6.已知复数(为虚数单位),则()A. B. C. D.7.展开式中的系数为()A. B. C. D.608.已知,,,则().A. B. C. D.9.将函数的图象向左平移个单位长度后得到函数的图象,则的最小值为()A. B. C. D.10.已知函数在上的值域为,函数在上的值域为.若是的必要不充分条件,则的取值范围是()A. B.C. D.11.下列函数中,既是偶函数,又在区间上单调递增的是()A. B. C. D.12.已知圆柱的轴截面的周长为,则圆柱体积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若ξ~N,且P(2<ξ<4)=0.4,则P(ξ<0)=_____.14.观察下列等式:,,,……可以推测____(,用含有的代数式表示).15.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“…”既代表无限次重复,但原式却是个定值,它可以通过方程求得,类似上述过程,则__________.16.已知曲线在点处的切线为,则点的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数在上的单调性;(2)当时,若时,求证:.18.(12分)已知函数,其中为实常数.(1)若当时,在区间上的最大值为,求的值;(2)对任意不同两点,,设直线的斜率为,若恒成立,求的取值范围.19.(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在[80,90)内的株数,求随机变量的分布列及数学期望.20.(12分)如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.21.(12分)已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.(1)求椭圆的方程;(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.22.(10分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.详解:∵即

其中由题意作出图形,,

令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,

由于此时直线与圆相切,

在直角三角形中,,由图形知,的取值范围是则的取值范围是.

故选C.点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.2、A【解题分析】

利用正态分布曲线关于对称进行求解.【题目详解】,正态分布曲线关于对称,,,.【题目点拨】本题考查正态分布,考查对立事件及概率的基本运算,属于基础题.3、A【解题分析】

设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【题目详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.【题目点拨】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、D【解题分析】分析:先还原正方体,将对应的字母标出,与所成角等于与所成角,在三角形中,再利用余弦定理求出此角的余弦值即可.详解:还原正方体,如图所示,设,则,与所成角等于与所成角,余弦值为,故选D.点睛:本题主要考查异面直线所成的角以及空间想象能力,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.5、A【解题分析】

根据类比规律进行判定选择【题目详解】根据平面几何与立体几何对应类比关系:周长类比表面积,长方形类比长方体,正方形类比正方体,面积类比体积,因此命题“周长为定值的长方形中,正方形的面积取得最大”,类比猜想得:在表面积为定值的长方体中,正方体的体积取得最大,故选A.【题目点拨】本题考查平面几何与立体几何对应类比,考查基本分析判断能力,属基础题.6、D【解题分析】

利用复数的运算法则、模的计算公式即可得出结果.【题目详解】解:,则.故选:D.【题目点拨】本题考查复数的运算法则,模的计算公式,考查计算能力,属于基础题.7、A【解题分析】分析:先求展开式的通项公式,根据展开式中的系数与关系,即可求得答案.详解:展开式的通项公式,可得展开式中含项:即展开式中含的系数为.故选A.点睛:本题考查了二项式定理的应用问题,利用二项展开式的通项公式求展开式中某项的系数是解题关键.8、C【解题分析】试题分析:因为所以选C.考点:比较大小9、C【解题分析】

根据题意得到变换后的函数解析式,利用诱导公式求得结果【题目详解】由题,向左平移不改变周期,故,平移得到,,当时,,故选C【题目点拨】本题考查函数的图象变换规律,利用诱导公式完成正、余弦型函数的转化10、B【解题分析】

先计算出两个函数的值域,根据是的必要不充分条件可得是的真子集,从而得到的取值范围.【题目详解】因为在上单调递增,所以,又函数在上单调递增,于是.因为是的必要不充分条件,所以是的真子集,故有(等号不同时取),得,故选B.【题目点拨】(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含.11、D【解题分析】分析:根据函数奇偶性和单调性的定义和性质,对选项中的函数逐一验证判断即可.详解:四个选项中的函数都是偶函数,在上三个函数在上都递减,不符合题意,在上递增的只有,而故选D.点睛:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质,意在考查综合应用所学知识解决问题的能力.12、B【解题分析】

分析:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,利用基本不等式,可求圆柱体积的最大值.详解:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,∴2r+h=r+r+h≥3,∴r2h≤∴V=πr2h≤8π,∴圆柱体积的最大值为8π,点睛:(1)本题主要考查圆柱的体积和基本不等式,意在考查学生对这些知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.二、填空题:本题共4小题,每小题5分,共20分。13、0.1.【解题分析】

由正态分布曲线的对称性,可得,进而得到所以,即可求解.【题目详解】由题意,随机变量,且,根据正态分布曲线的对称性,可得,所以.【题目点拨】本题主要考查了正态分布的应用,其中解答中熟记正态分布曲线的对称性是解答的关键,着重考查了推理与运算能力,属于基础题.14、或或【解题分析】

观察找到规律由等差数列求和可得.【题目详解】由观察找到规律可得:故可得解.【题目点拨】本题考查观察能力和等差数列求和,属于中档题.15、【解题分析】

先换元令,平方可得方程,解方程即可得到结果.【题目详解】令,则两边平方得,得即,解得:或(舍去)本题正确结果:【题目点拨】本题考查新定义运算的问题,关键是读懂已知条件所给的方程的形式,从而可利用换元法来进行求解.16、.【解题分析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,,,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递增,在上单调递减;(2)证明见解析.【解题分析】

(1)对求导后讨论的范围来判断单调性;(2)构造函数,借助得到,设,使得,设,根据该函数性质即可证明【题目详解】(1)由题意可知,,,(i)当时,恒成立,所以函数在上单调递增;(ii)当时,令,得,①当,即时,在上恒成立,所以函数在上单调递减;②当,即时,在上,,函数在上单调递增;在上,,函数在上单调递减.综上所述,当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递增,在上单调递减.(2)证明:令,由题意可得,不妨设.所以,于是.令,,则,,.令,则,在上单调递增,因为,所以,且,所以,即.【题目点拨】本题考察(1)用分类讨论的方法判断函数单调性;(2)多变量不等式要先化为单变量不等式,利用综合法证明猜想18、(1)(2)【解题分析】

(1)讨论与0,1,e的大小关系确定最值得a的方程即可求解;(2)原不等式化为,不妨设,整理得,设,当时,,得,分离,求其最值即可求解a的范围【题目详解】(1),令,则.所以在上单调递增,在上单调递减.①当,即时,在区间上单调递减,则,由已知,,即,符合题意.②当时,即时,在区间上单调递增,在上单调递减,则,由已知,,即,不符合题意,舍去.③当,即时,在区间上单调递增,则,由已知,,即,不符合题意,舍去.综上分析,.(2)由题意,,则原不等式化为,不妨设,则,即,即.设,则,由已知,当时,不等式恒成立,则在上是增函数.所以当时,,即,即恒成立,因为,当且仅当,即时取等号,所以.故的取值范围是.【题目点拨】本题考查函数的单调性,不等式恒成立问题,构造函数与分离变量求最值,分类讨论思想,转化化归能力,是中档题19、(1)见解析;(2)见解析.【解题分析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.详解:(1)由题意可知,样本容量,.(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,则,,.123故.点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想.20、(1)见解析;(2).【解题分析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.21、(1)(2)【解题分析】分析:(1)根据周长确定,由通径确定,求得,因而确定椭圆的方程.(2)分析得直线、直线的斜率存在时,根据过焦点可设出AB直线方程为,因而直线的方程为.联立椭圆方程消去y,得到关于x的一元二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论