




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市惠州中学2024届高二数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种2.已知数列为等比数列,首项,数列满足,且,则()A.8 B.16 C.32 D.643.的值为()A. B. C. D.4.某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为()米.A.75 B.85 C.100 D.1105.幂函数的图象过点,那么的值为()A. B.64 C. D.6.已知函数,则的值是()A. B. C. D.7.已知的最小正周期是,将图象向左平移个单位长度后所得的函数图象过点,则()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增8.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项 B.项 C.项 D.项9.已知随机变量服从正态分布,若,则()A. B. C. D.10.阅读如图所示的程序框图,则输出的S等于()A.38 B.40 C.20 D.3211.已知函数,设,则A. B.C. D.12.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角,,的对边分别是,,,,若,则的周长为__________.14.已知定义在上的函数满足,当时,,则函数在区间上的零点个数是____.15.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是__________.16.已知实数x,y满足不等式组,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(1)讨论函数在上的单调性;(2)若在内有解,求的取值范围.18.(12分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.19.(12分)“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:运动达人参与者合计男教师602080女教师402060合计10040140(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.参考公式:,其中.参考数据:0.0500.0100.0013.8416.63510.82820.(12分)已知数列中,,.(1)写出的值,猜想数列的通项公式;(2)用数学归纳法证明(1)中你的结论.21.(12分)设抛物线的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点.(1)求抛物线C的方程;(2)设过点的直线分别与抛物线C交于点D,E和点G,H,且,求四边形面积的最小值.22.(10分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有种,应选D.2、C【解题分析】
先确定为等差数列,由等差的性质得进而求得的通项公式和的通项公式,则可求【题目详解】由题意知为等差数列,因为,所以,因为,所以公差,则,即,故,于是.故选:C【题目点拨】本题考查等差与等比的通项公式,等差与等比数列性质,熟记公式与性质,准确计算是关键,是基础题3、C【解题分析】分析:直接利用微积分基本定理求解即可.详解:,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.4、B【解题分析】分析:设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(35)的值即可.详解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意可知:A=50,B=110﹣50=60,T==21,∴ω=,即f(t)=50sin(t+φ)+60,又因为f(0)=110﹣100=10,即sinφ=﹣1,故φ=,∴f(t)=50sin(t+)+60,∴f(35)=50sin(×35+)+60=1.故选B.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.5、A【解题分析】
设幂函数的解析式为∵幂函数的图象过点.选A6、C【解题分析】
首先计算出,再把的值带入计算即可.【题目详解】根据题意得,所以,所以选择C【题目点拨】本题主要考查了分段函数求值的问题,属于基础题.7、B【解题分析】由题设,则,向左平移后可得经过点,即,解之得,所以,由可知函数在上单调递增,应选答案B。8、D【解题分析】
分别写出、时,不等式左边的式子,从而可得结果.【题目详解】当时,不等式左边为,当时,不等式左边为,则增加了项,故选D.【题目点拨】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.9、C【解题分析】分析:先根据正态分布得再求最后求得=0.34.详解:由正态分布曲线得所以所以=0.5-0.16=0.34.故答案为:C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.10、B【解题分析】
模拟程序,依次写出各步的结果,即可得到所求输出值.【题目详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【题目点拨】本题考查程序框图中的循环结构,难度较易.11、D【解题分析】
对函数求导,得出函数在上单调递减,利用中间值法比较、、的大小关系,利用函数的单调性得出、、三个数的大小关系.【题目详解】,,所以,函数在上单调递减,,,即,,则,函数在上单调递减,因此,,故选D.【题目点拨】本题考查函数值的大小比较,这类问题需要结合函数的单调性以及自变量的大小,其中单调性可以利用导数来考查,本题中自变量的结构不相同,可以利用中间值法来比较,考查推理能力,属于中等题.12、B【解题分析】解:因为5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,则二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题意,所以,且由余弦定理,得,所以所以的周长为.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.14、9【解题分析】
令,先求出当时的零点个数,然后利用周期性和奇偶性判断在区间上零点的个数。【题目详解】由于定义在上的函数满足,函数为奇函数,则在上必有,当,由得,即,可得:,故,,函数为周期为3的奇函数,,此时有3个零点,又,,,此时有1,2,4,5四个零点;当,故,即,此时有两个零点综上所述:函数在区间上的零点个数是9.【题目点拨】本题主要考查函数零点的判断,利用函数的周期性和奇偶性,分别判断零点的个数,做到不重不漏,综合性较强,属于中档题。15、【解题分析】分析:令y′≥1在(1,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的范围.详解:y′=+2ax,x∈(1,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥1在(1,+∞)上恒成立,∴a≥﹣恒成立,x∈(1,+∞).令f(x)=﹣,x∈(1,+∞),则f(x)在(1,+∞)上单调递增,又f(x)=﹣<1,∴a≥1.故答案为:.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.16、12.【解题分析】分析:画出不等式组表示的可行域,平移,结合所画可行域,可求得的最大值.详解:作出不等式组表示的平面区域如阴影部分,分析知,当时,平移直线,由图可得直线经过点时,取得最大值,且,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】
(1)计算函数的导函数,得到对应方程的根为,讨论三种情况得到答案.(2)计算的导数,根据单调性计算函数的最小值,根据解得范围.【题目详解】(1),令,解得.当时,即时,在上,函数单调递增,在上,函数单调递减;当时,即时,函数在定义域上单调递增;当时,即时,在上,函数单调递增,在上,函数单调递减.(2)若在内有解,则由(1)可知,当,即时,∵,∴,函数在上单调递增,,解得;当,即时,∵,∴在时,,函数在上单调递减,在时,,函数在上单调递增,∴令,函数在上单调递增.∴恒成立,∴.当,即时,∵,∴,函数在上单调递减,不成立.综上所述:.【题目点拨】本题考查了函数的单调性的讨论,存在性问题,将存在性问题转化为函数的最小值是解题的关键,也可以用参数分离的方法求解.18、(1);(2),【解题分析】
(1),可得到,即可求出的值;(2)由可判断的单调性,从而可求出函数在的最值.【题目详解】(1),则,.(2)的定义域为,,令,则,当时,,单调递减;当时,,单调递增,,∵,,且,∴.【题目点拨】本题考查了导数的几何意义,考查了函数的单调性的应用,考查了学生的计算能力,属于基础题.19、(1)不能在犯错误的概率不超过的前提下认为获得“运动达人”称号与性别有关;(2)见解析.【解题分析】
(1)计算比较3.841即可得到答案;(2)计算出男教师和女教师人数,的所有可能取值有,分别计算概率可得分布列,于是可求出数学期望.【题目详解】(1)根据列联表数据得:不能在犯错误的概率不超过的前提下认为获得“运动达人”称号与性别有关(2)根据分层抽样方法得:男教师有人,女教师有人由题意可知,的所有可能取值有则;;;的分布列为:【题目点拨】本题主要考查独立性检验统计思想,超几何分布的分布列与数学期望,意在考查学生的分析能力,计算能力.20、(1),,,猜想(2)见解析【解题分析】
(1)依递推公式计算,并把各分子都化为3,可归纳出;(2)用数学归纳法证明即可.【题目详解】解:(1),,∴,,,猜想(2)用数学归纳法证明如下:①当时,由知猜想成立;②假设时,猜想成立,即则∴时,猜想成立,根据①②可知,猜想对一切正整数都成立.【题目点拨】本题考查归纳推理,考查数学归纳法,属于基础题.在用数学归纳法证明时,在证明时的命题时一定要用到时的归纳假设,否则不是数学归纳法.21、(1);(2)1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级小组讨论的高效实施计划
- 工业自动化系统集成及应用案例分析
- 游戏账号买卖交易平台合作协议
- 2025年银川货运上岗证考试题答案
- 2025年荆州货运资格证培训考试题
- 汽车驾驶技巧考试题库
- 湖北省鄂东南省级示范高中教育教学改革联盟2022-2023学年高一下学期期中联考地理试题(含答案)
- 山东省滨州市无棣县2023-2024学年三年级下学期期中考试科学试题(含答案)
- 三人共同还贷款合同样本
- 人教版九年级化学上册教学设计:第五单元化学方程式的计算
- 用人需求申请表
- (完整版)附:《档案目录清单》
- 《酒店概论》考试复习参考题库(含答案)
- 版式设计网格课件
- 消防安全检查表(车间)
- 产品报价单(5篇)
- 大飞机C919:追梦五十载,“破茧化蝶”
- 品牌视觉形象设计智慧树知到答案章节测试2023年天津科技大学
- 高考语文复习-议论文结尾写作之深化主旨 练习
- 汉语词汇与文化课件
- 浅析公路桥梁施工中高性能混凝土的应用
评论
0/150
提交评论