




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省栖霞市数学高二第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。下表为10名学生的预赛成绩,其中有些数据漏记了(见表中空白处)学生序号12345678910立定跳远(单位:米)1.961.681.821.801.601.761.741.721.921.7830秒跳绳(单位:次)63756062727063在这10名学生中进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则以下判断正确的为()A.4号学生一定进入30秒跳绳决赛B.5号学生一定进入30秒跳绳决赛C.9号学生一定进入30秒跳绳决赛D.10号学生一定进入30秒眺绳决赛2.已知函数f(x)是定义在R上的增函数,f(x)+2>f'(x),f(0)=1,则不等式ln[f(x)+2]>ln3+x的解集为()A.(一∞,0) B.(0,+∞) C.(一∞,1) D.(1,+∞)3.已知函数,的值域是,则实数的取值范围是()A. B. C. D.4.曲线在点处的切线方程是()A. B. C. D.5.()A. B. C.0 D.6.若动圆的圆心在抛物线上,且与直线相切,则动圆必过一个定点,该定点坐标为()A. B. C. D.7.4名同学分别从6所大学中选择一所参观,则不同选法有()A.种 B.种 C.种 D.种8.设,向量,,且,则()A. B. C. D.9.设,则随机变量的分布列是:则当在内增大时()A.增大 B.减小C.先增大后减小 D.先减小后增大10.设函数,,若存在唯一的整数,使,则的取值范围是()A. B. C. D.11.命题:的否定为()A. B.C. D.12.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列中,,可得,由此归纳出的通项公式二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的方程恰有4个不同的实数解,则的取值范围是_____.14.在平面直角坐标系中,已知,,两曲线与在区间上交点为.若两曲线在点处的切线与轴分别相交于两点,则线段的为____________.15.过坐标原点作曲线的切线,则曲线、直线与轴所围成的封闭图形的面积为______16.已知随机变量服从二项分布,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.18.(12分)在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.19.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab20.(12分)已知,,.求与的夹角;若,,,,且与交于点,求.21.(12分)某城市理论预测2010年到2014年人口总数与年份的关系如下表所示年份2010+x(年)01234人口数y(十万)5781119(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)据此估计2015年该城市人口总数.22.(10分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先确定立定跳远决赛的学生,再讨论去掉两个的可能情况即得结果【题目详解】进入立定跳远决赛的学生是1,3,4,6,7,8,9,10号的8个学生,由同时进入两项决赛的有6人可知,1,3,4,6,7,8,9,10号有6个学生进入30秒跳绳决赛,在这8个学生的30秒跳绳决赛成绩中,3,6,7号学生的成绩依次排名为1,2,3名,1号和10号成绩相同,若1号和10号不进入30秒跳绳决赛,则4号肯定也不进入,这样同时进入立定跳远决赛和30秒跳绳决赛的只有5人,矛盾,所以1,3,6,7,10号学生必进入30秒跳绳决赛.选D.【题目点拨】本题考查合情推理,考查基本分析判断能力,属中档题.2、A【解题分析】分析:先令,则且原不等式转化为,再根据单调性得结果.详解:令,则因为原不等式转化为,所以因此选A.点睛:解函数不等式,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.3、B【解题分析】分析:当x≤2时,检验满足f(x)≥1.当x>2时,分类讨论a的范围,依据函数的单调性,求得a的范围,综合可得结论.详解:由于函数f(x)=(a>0且a≠1)的值域是[1,+∞),故当x≤2时,满足f(x)=6﹣x≥1.①若a>1,f(x)=3+logax在它的定义域上单调递增,当x>2时,由f(x)=3+logax≥1,∴logax≥1,∴loga2≥1,∴1<a≤2.②若0<a<1,f(x)=3+logax在它的定义域上单调递减,f(x)=3+logax<3+loga2<3,不满足f(x)的值域是[1,+∞).综上可得,1<a≤2,故答案为:B点睛:本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于中档题.分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.4、D【解题分析】
求导得到,故,计算切线得到答案.【题目详解】,,,所以切线方程为,即.故选:.【题目点拨】本题考查了切线方程,意在考查学生的计算能力.5、D【解题分析】
定积分的几何意义是圆的个圆的面积,计算可得结果.【题目详解】定积分的几何意义是圆的个圆的面积,∴,故选D.【题目点拨】本题考查定积分,利用定积分的几何意义是解决问题的关键,属基础题6、A【解题分析】
直线为的准线,圆心在该抛物线上,且与直线相切,则圆心到准线的距离即为半径,那么根据抛物线的定义可知定点坐标为抛物线焦点.【题目详解】由题得,圆心在上,它到直线的距离为圆的半径,为的准线,由抛物线的定义可知,圆心到准线的距离等于其到抛物线焦点的距离,故动圆C必过的定点为抛物线焦点,即点,故选A.【题目点拨】本题考查抛物线的定义,属于基础题.7、B【解题分析】
每名同学从6个大学点中选择一个参观,每个同学都有6种选择,根据乘法原理,计算即可得答案.【题目详解】因为每名同学都有6种选择,相互不影响,所以有种选法.故选:B.【题目点拨】本题考查分步计数原理的运用,注意学生选择的景区可以重复.属于基础题.8、B【解题分析】试题分析:由知,则,可得.故本题答案应选B.考点:1.向量的数量积;2.向量的模.9、D【解题分析】
研究方差随变化的增大或减小规律,常用方法就是将方差用参数表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.【题目详解】方法1:由分布列得,则,则当在内增大时,先减小后增大.方法2:则故选D.【题目点拨】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.10、C【解题分析】
先确定是唯一整数解,再通过图像计算得到范围.【题目详解】是函数单调递减;函数单调递增.存在唯一的整数,使取,,满足,则0是唯一整数.恒过定点如图所示:
即综上所诉:故答案选C【题目点拨】本题考查了函数的图像,函数的单调性,首先确定0是唯一解是解题的关键.11、C【解题分析】分析:由题意,对特称命题进行否定即可确定.详解:特称命题的否定为全称命题,结合题中命题可知:命题:的否定为.本题选择C选项.点睛:对含有存在(全称)量词的命题进行否定需两步操作:(1)将存在(全称)量词改写成全称(存在)量词;(2)将结论加以否定.这类问题常见的错误是没有变换量词,或者对于结论没给予否定.有些命题中的量词不明显,应注意挖掘其隐含的量词.12、C【解题分析】
推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【题目详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【题目点拨】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求得的零点,由此判断出方程恰有2个不同的实数解,结合图像求得的取值范围.【题目详解】有两个零点,画出图像如下图所示,依题意恰有4个不同的实数解,则方程恰有2个不同的实数解,由图可知,故的取值范围为.故答案为:【题目点拨】本小题主要考查根据分段函数图像以及方程零点个数求参数的取值范围,考查数形结合的数学思想方法,属于基础题.14、【解题分析】分析:求出点坐标,然后分别求出和在A处切线方程,即可求出两点坐标详解:由可得,所以又因为所以所以在A点处切线方程为:令解得,所以又因为所以所以在A点处切线方程为:令解得,所以所以线段BC的长度为点睛:熟练记忆导函数公式是解导数题的前提条件,导数的几何意义是在曲线上某一点处的导数就等于该点处切线斜率,是解决曲线切线的关键,要灵活掌握.15、.【解题分析】
设切点为,先求函数导数得切线斜率,进而得切线方程,代入点可得切线方程,进而由定积分求面积即可.【题目详解】设切点为,因为,所以,因此在点处的切线斜率为,所以切线的方程为,即;又因为切线过点,所以,解得,所以,即切点为,切线方程为,作出所围图形的简图如下:因此曲线、直线与轴所围成的封闭图形的面积为.【题目点拨】本题主要考查了导数的几何意义的应用,考查了利用微积分基本定理求解图形面积,属于中档题.16、【解题分析】
直接利用二项分布公式得到答案.【题目详解】随机变量服从二项分布,则故答案为:【题目点拨】本题考查了二项分布的计算,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据题意,分别求出曲线上半部分和下半部分直角坐标方程,利用直角坐标系与极坐标的转化公式,即可得到曲线的极坐标方程;(2)由题可知要使面积最大,则点在半圆上,且,利用极坐标方程求出,由三角形面积公式即可得到答案。【题目详解】(1)由题设可得,曲线上半部分的直角坐标方程为,所以曲线上半部分的极坐标方程为.又因为曲线下半部分的标准方程为,所以曲线下半部分极坐标方程为,故曲线的极坐标方程为.(2)由题设,将代入曲线的极坐标方程可得:.又点是曲线上的动点,所以.由面积公式得:当且仅当,时等号成立,故面积的最大值为.【题目点拨】本题考查直角坐标与极坐标的互化,利用极坐标的几何意义求三角形面积,考查学生基本的计算能力,属于中档题18、(1)(2)【解题分析】
(1)先后利用正弦定理余弦定理化简得到,即得B的大小;(2)设,则,所以,利用余弦定理求出m的值,再求的面积.【题目详解】解:(1)因为,由正弦定理,得,即.由余弦定理,得.因为,所以.(2)因为,所以.设,则,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1).(2)分布列见解析,.【解题分析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.20、;.【解题分析】
化简得到,再利用夹角公式得到答案.,根据向量关系化简得到,再平方得到得到答案.【题目详解】,.又,,,..又,.,,,,.【题目点拨】本题考查了向量的计算,将表示出来是解题的关键,意在考查学生对于向量公式的灵活运用和计算能力.21、(1);(2)196万.【解题分析】试题分析:(1)先求出五对数据的平均数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级小组讨论的高效实施计划
- 工业自动化系统集成及应用案例分析
- 游戏账号买卖交易平台合作协议
- 2025年银川货运上岗证考试题答案
- 2025年荆州货运资格证培训考试题
- 汽车驾驶技巧考试题库
- 湖北省鄂东南省级示范高中教育教学改革联盟2022-2023学年高一下学期期中联考地理试题(含答案)
- 山东省滨州市无棣县2023-2024学年三年级下学期期中考试科学试题(含答案)
- 三人共同还贷款合同样本
- 人教版九年级化学上册教学设计:第五单元化学方程式的计算
- 用人需求申请表
- (完整版)附:《档案目录清单》
- 《酒店概论》考试复习参考题库(含答案)
- 版式设计网格课件
- 消防安全检查表(车间)
- 产品报价单(5篇)
- 大飞机C919:追梦五十载,“破茧化蝶”
- 品牌视觉形象设计智慧树知到答案章节测试2023年天津科技大学
- 高考语文复习-议论文结尾写作之深化主旨 练习
- 汉语词汇与文化课件
- 浅析公路桥梁施工中高性能混凝土的应用
评论
0/150
提交评论