2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题含解析_第1页
2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题含解析_第2页
2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题含解析_第3页
2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题含解析_第4页
2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高二数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为()A.543 B.425 C.393 D.2752.某几何体的三视图如图所示,则该几何体的体积(单位:)是()A. B. C. D.3.命题“任意”为真命题的一个充分不必要条件是()A. B. C. D.4.若,,,则,,的大小关系是()A. B. C. D.5.复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”7.复数是虚数单位的虚部是A. B.1 C. D.i8.在椭圆中,分别是其左右焦点,若,则该椭圆离心率的取值范围是()A. B. C. D.9.在某个物理实验中,测得变量x和变量y的几组数据,如下表:xy则下列选项中对x,y最适合的拟合函数是()A. B. C. D.10.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A.24 B.48C.60 D.7211.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为分,学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为分,则的值为()A. B. C. D.12.在数列中,若,,则()A.108 B.54 C.36 D.18二、填空题:本题共4小题,每小题5分,共20分。13.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______.14.如图,在中,,和分别是边和上一点,,将沿折起到点位置,则该四棱锥体积的最大值为_______.15.已知则_____________.16.将集合的元素分成互不相交的三个子集:,其中,,,且,,则满足条件的集合有__________个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,求及的值.18.(12分)2019年高考前夕某地天空出现了一朵点赞云,为了将这朵祥云送给马上升高三的各位学子,现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求曲线的直角坐标方程:(2)点为曲线上任意一点,点为曲线上任意一点,求的最小值。19.(12分)某市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15-75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:,,,,,,把年龄落在和内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”与“中老年人”的人数之比为.(1)求图中,的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值;(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有99.9%的把握认为“中老年人”比“青少年人”更加关注此活动?关注不关注合计青少年人15中老年人合计5050100附参考公式及参考数据:,其中.0.0500.0100.0013.8416.63510.82820.(12分)已知椭圆:的左、右焦点分别为,,过原点且斜率为1的直线交椭圆于两点,四边形的周长与面积分别为12与.(1)求椭圆的标准方程;(2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.21.(12分)设.(1)解不等式;(2)若不等式在上恒成立,求实数的取值范围.22.(10分)已知复数,是的共轭复数,且为纯虚数,在复平面内所对应的点在第二象限,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据题意,易得5名同学中每人有3种报名方法,由分步计数原理计算可得答案.第二种先分组再排列,问题得以解决.详解:5名同学报名参加跳绳、接力,投篮三项比赛,每人限报一项,每人有3种报名方法,根据分步计数原理,x==243种,当每项比赛至少要安排一人时,先分组有(+)=25种,再排列有=6种,所以y=25×6=150种,所以x+y=1.故选:C.点睛:排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.2、A【解题分析】由三视图可知,该几何体是半个圆柱和以圆柱轴截面为底面的四棱锥组成的组合体,其中半圆柱底面半径为,高为,体积为,四棱锥体积为,所以该几何体体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3、C【解题分析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.4、A【解题分析】分析:利用定积分,将已知化简,即可比较大小.详解:由题意,可得,,,则,所以,故选A.点睛:本题主要考查了定积分的运算,其中根据微积分基本定理,求解的值是解答的关键,着重考查了推理与运算能力.5、A【解题分析】

复数的共轭复数为,共轭复数在复平面内对应的点为.【题目详解】复数的共轭复数为,对应的点为,在第一象限.故选A.【题目点拨】本题考查共轭复数的概念,复数的几何意义.6、A【解题分析】

对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【题目详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.【题目点拨】本题考查独立性检验,属于基础题.7、B【解题分析】

利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案.【题目详解】,复数的虚部是1.故选B.【题目点拨】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8、B【解题分析】解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得|PF2|=根据椭圆的几何性质,|PF2|≥a-c,故≥a-c,即a≤3ce≥,又e<1,故该椭圆离心率的取值范围故选B.9、D【解题分析】

根据所给数据,代入各函数,计算验证可得结论.【题目详解】解:根据,,代入计算,可以排除;根据,,代入计算,可以排除、;将各数据代入检验,函数最接近,可知满足题意故选:.【题目点拨】本题考查了函数关系式的确定,考查学生的计算能力,属于基础题.10、D【解题分析】试题分析:由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有种排法,所以奇数的个数为,故选D.【考点】排列、组合【名师点睛】利用排列、组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置.11、A【解题分析】

依题意可知同学正确数量满足二项分布,同学正确数量满足二项分布,利用二项分布的方差计算公式分别求得两者的方差,相减得出正确结论.【题目详解】设学生答对题的个数为,则得分(分),,,所以,同理设学生答对题的个数为,可知,,所以,所以.故选A.【题目点拨】本小题主要考查二项分布的识别,考查方差的计算,考查阅读理解能力,考查数学在实际生活中的应用.已知随机变量分布列的方差为,则分布列的方差为.12、B【解题分析】

通过,可以知道数列是公比为3的等比数列,根据等比数列的通项公式可以求出的值.【题目详解】因为,所以数列是公比为的等比数列,因此,故本题选B.【题目点拨】本题考查了等比数列的概念、以及求等比数列某项的问题,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【题目详解】城市有甲、乙、丙三组,对应的城市数分别为4,12,8.

本市共有城市数24,用分层抽样的方法从中抽取一个容量为6的样本,

每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【题目点拨】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.14、【解题分析】

根据题中条件,设,表示出四边形的面积,由题意得到平面时,四棱锥体积最大,此时,根据四棱锥的体积公式,表示出,用导数的方法求其最值即可.【题目详解】在中,由已知,,,所以设,四边形的面积为,当平面时,四棱锥体积最大,此时,且,故四棱锥体积为,,时,;时,,所以,当时,.故答案为【题目点拨】本题主要考查求几何体的体积,熟记体积公式,以及导数的方法研究函数的最值即可,属于常考题型.15、2【解题分析】

由指数和对数函数的运算公式,计算即可.【题目详解】由得a=,由,得b=.所以=故答案为:2【题目点拨】本题考查的是指数与对数的互化及对数公式的运算,熟练掌握公式是关键,属于基础题.16、3【解题分析】

分析:由可得,令,则,,,然后列举出的值,从而可得结果.详解:,所以,令,根据合理安排性,集合的最大一个元素,必定为:,则,又,,①当时,同理可得.②当时,同理可得或,综上,一共有种,故答案为.点睛:本题考查主要考查集合与元素的关系,意在考查抽象思维能力,转化与划归思想,分类讨论思想应用,属于难题.解得本题的关键是首项确定,从而得到,由此打开突破点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,.【解题分析】

计算出的取值范围,判断出的符号,利用同角三角函数的平方关系计算出的值,然后利用半角公式计算出的值.【题目详解】,所以,,且,,,由,得.【题目点拨】本题考查利用同角三角函数的基本关系求值,以及利用半角公式求值,在计算时,首先要考查角的象限,确定所求函数值的符号,再利用相关公式进行计算,考查运算求解能力,属于基础题.18、(1):;:;:;(2)【解题分析】

(1)根据得的直角坐标方程,根据平方关系消参数得的直角坐标方程,根据加减消元得的直角坐标方程(2)结合图像确定的最小值取法,再计算得结果.【题目详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为直线的直角坐标方程为(2)由与的方程可知,的距离的最小值为的圆心与点的距离减去的半径。【题目点拨】本题考查极坐标方程化直角坐标方程、参数方程化普通方程以及直线与圆位置关系,考查综合分析求解能力,属中档题.19、(1);100人年龄的平均值为.(2)表格数据为:25,40,35,25,60;没有99.9%的把握认为“中老年人”比“青少年人”更加关注此活动.【解题分析】

(1)由频率分布直方图求出对应的频率,列方程求得和的值,再计算这组数据的平均值;(2)由题意计算“青少年人”与“中老年人”的人数,完成列联表,计算观测值,对照临界值得出结论.【题目详解】解:(1)由题意知,青少年、中老年人的频率分别为和,由,,解得:;则这100人年龄的平均值为:;(2)由题意知,青少年人共有人,中老年人共有人;由此完成列联表如下,关注不关注合计青少年人152540中老年人352560合计5050100根据此统计结果,计算,所以没有99.9%的把握认为“中老年人”比“青少年人”更加关注此活动.【题目点拨】本题考查了列联表与独立性检验的应用问题,也考查了频率分布直方图应用问题,是中档题.20、(1)(2)【解题分析】

(1)不妨设点是第一象限的点,由四边形的周长求出,面积求出与关系,再由点在直线上,得到与关系,代入椭圆方程,求解即可;(2)先求出直线斜率不存在时,原点到的中垂线的距离,斜率为0时与椭圆只有一个交点,直线斜率存在时,设其方程为,利用与圆相切,求出关系,直线方程与椭圆方程联立,求出中点坐标,得到的中垂线方程,进而求出原点到中垂线的距离表达式,结合关系,即可求出结论.【题目详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论