




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省厦门二中数学高二下期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个正方体的展开如图所示,点,,为原正方体的顶点,点为原正方体一条棱的中点,那么在原来的正方体中,直线与所成角的余弦值为()A. B. C. D.2.如图所示是的图象的一段,它的一个解析式是()A. B.C. D.3.抛物线和直线所围成的封闭图形的面积是()A. B. C. D.4.已知随机变量服从二项分布,若,,则,分别等于()A., B., C., D.,5.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为37.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种8.下列关于“频率”和“概率”的说法中正确的是()(1)在大量随机试验中,事件出现的频率与其概率很接近;(2)概率可以作为当实验次数无限增大时频率的极限;(3)计算频率通常是为了估计概率.A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)9.方程所表示的曲线是()A.双曲线的一部分 B.椭圆的一部分 C.圆的一部分 D.直线的一部分10.已知函数,若关于的方程有两个相异实根,则实数的取值范围是()A. B.C. D.11.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。下表为10名学生的预赛成绩,其中有些数据漏记了(见表中空白处)学生序号12345678910立定跳远(单位:米)1.961.681.821.801.601.761.741.721.921.7830秒跳绳(单位:次)63756062727063在这10名学生中进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则以下判断正确的为()A.4号学生一定进入30秒跳绳决赛B.5号学生一定进入30秒跳绳决赛C.9号学生一定进入30秒跳绳决赛D.10号学生一定进入30秒眺绳决赛12.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于3”;事件B:“甲、乙两骰子的点数之和等于7”,则P(B/A)的值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知某运动员每次投篮命中的概率都为.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出到之间取整数值的随机数,指定,,,表示命中,,,,,,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了组随机数:据此估计,该运动员三次投篮恰有两次命中的概率为__________.14.已知函数在定义域内存在单调递减区间,则实数的取值范围是______15.在的展开式中,的系数为__________(用数字作答).16.已知函数.为的导函数,若,则实数的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校位同学的数学与英语成绩如下表所示:学号数学成绩英语成绩学号数学成绩英语成绩将这位同学的两科成绩绘制成散点图如下:(1)根据该校以往的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩为.考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的、)在英语考试中作弊,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;(2)取消两位作弊同学的两科成绩后,求数学成绩与英语成绩的线性回归方程,并据此估计本次英语考试学号为的同学如果没有作弊的英语成绩(结果保留整数).附:位同学的两科成绩的参考数据:,.参考公式:,.18.(12分)已知函数.(Ⅰ)求函数y=f(x)图象的对称轴和对称中心;(Ⅱ)若函数,的零点为x1,x2,求cos(x1﹣x2)的值.19.(12分)已知,.(1)求证:;(2)若不等式对一切实数恒成立,求实数的取值范围.20.(12分)设函数,曲线在点,(1))处的切线与轴垂直.(1)求的值;(2)若存在,使得,求的取值范围.21.(12分)已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)若直线与曲线相交于,两点,且,求直线的倾斜角的值.22.(10分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先还原正方体,将对应的字母标出,与所成角等于与所成角,在三角形中,再利用余弦定理求出此角的余弦值即可.详解:还原正方体,如图所示,设,则,与所成角等于与所成角,余弦值为,故选D.点睛:本题主要考查异面直线所成的角以及空间想象能力,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.2、D【解题分析】
根据图象的最高点和最低点求出A,根据周期T求ω,图象过(),代入求,即可求函数f(x)的解析式;【题目详解】由图象的最高点,最低点,可得A,周期Tπ,∴.图象过(),∴,可得:,则解析式为ysin(2)故选D.【题目点拨】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.3、C【解题分析】
先计算抛物线和直线的交点,再用定积分计算面积.【题目详解】所围成的封闭图形的面积是:故答案为C【题目点拨】本题考查了定积分的应用,意在考查学生应用能力和计算能力.4、C【解题分析】分析:直接利用二项分布的期望与方差列出方程求解即可.详解:随机变量服从二项分布,若,,
可得故选:C.点睛:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.5、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.6、D【解题分析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7、B【解题分析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.8、D【解题分析】
利用频率和概率的定义分析判断得解.【题目详解】(1)在大量随机试验中,事件出现的频率与其他概率很接近,所以该命题是真命题;(2)概率可以作为当实验次数无限增大时频率的极限,所以该命题是真命题;(3)计算频率通常是为了估计概率,所以该命题是真命题.故选D【题目点拨】本题主要考查频率和概率的关系,意在考查学生对这些知识的理解掌握水平.9、B【解题分析】
方程两边平方后可整理出椭圆的方程,由于的值只能取非负数,推断出方程表示的曲线为一个椭圆的一部分.【题目详解】解:两边平方,可变为,即,表示的曲线为椭圆的一部分;故选:.【题目点拨】本题主要考查了曲线与方程.解题的过程中注意的范围,注意数形结合的思想.10、B【解题分析】分析:将方程恰有两个不同的实根,转化为方程恰有两个不同的实根,在转化为一个函数的图象与一条折线的位置关系,即可得到答案.详解:方程恰有两个不同的实根,转化为方程恰有两个不同的实根,令,,其中表示过斜率为1或的平行折线,结合图象,可知其中折线与曲线恰有一个公共点时,,若关于的方程恰有两个不同的实根,则实数的取值范围是,故选B.点睛:本题主要考查了方程根的存在性及根的个数的判断问题,其中把方程的实根的个数转化为两个函数的图象的交点的个数,作出函数的图象是解答的关键,着重考查了转化思想方法,以及分析问题和解答问题的能力.11、D【解题分析】
先确定立定跳远决赛的学生,再讨论去掉两个的可能情况即得结果【题目详解】进入立定跳远决赛的学生是1,3,4,6,7,8,9,10号的8个学生,由同时进入两项决赛的有6人可知,1,3,4,6,7,8,9,10号有6个学生进入30秒跳绳决赛,在这8个学生的30秒跳绳决赛成绩中,3,6,7号学生的成绩依次排名为1,2,3名,1号和10号成绩相同,若1号和10号不进入30秒跳绳决赛,则4号肯定也不进入,这样同时进入立定跳远决赛和30秒跳绳决赛的只有5人,矛盾,所以1,3,6,7,10号学生必进入30秒跳绳决赛.选D.【题目点拨】本题考查合情推理,考查基本分析判断能力,属中档题.12、C【解题分析】
利用古典概型的概率公式计算出和,然后利用条件概率公式可计算出结果。【题目详解】事件甲的骰子的点数大于,且甲、乙两骰子的点数之和等于,则事件包含的基本事件为、、,由古典概型的概率公式可得,由古典概型的概率公式可得,由条件概率公式得,故选:C.【题目点拨】本题考查条件概率的计算,解题时需弄清楚各事件的基本关系,并计算出相应事件的概率,解题的关键在于条件概率公式的应用,考查运算求解能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、0.25【解题分析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为.答案为:0.25.14、【解题分析】
根据题意可知在内能成立,利用参变量分离法,转化为在上能成立,令,则将问题转化为,从而得到实数的取值范围.【题目详解】∵函数,∴在上能成立,∴,令,即为,∵的最大值为,∴,∴实数的取值范围为,故选答案为.【题目点拨】本题考查了利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数存在减区间,经常会运用分离变量,转化为求最值.属于中档题.15、60【解题分析】,它展开式中的第项为,令,则,的系数为,故答案为.16、【解题分析】
通过对原函数求导,代入1即得答案.【题目详解】根据题意,,所以,故.【题目点拨】本题主要考查导函数的运算法则,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)其余学生的数学平均分、英语平均分都为分;(2)数学成绩与英语成绩的线性回归方程,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【解题分析】
(1)利用平均数的公式求出这名学生的数学成绩之和以及英语成绩之和,再减去、号学生的数学成绩和英语成绩,计算其余名学生的数学成绩平均分和英语成绩的平均分;(2)设取消的两位同学的两科成绩分别为、,根据题中数据计算出和,并代入最小二乘法公共计算出回归系数和,可得出回归方程,再将号学生的数学成绩代入回归直线方程可得出其英语成绩.【题目详解】(1)由题名学生的数学成绩之和为,英语成绩之和为,取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和,其余名学生的英语成绩之和为.其余名学生的数学平均分,英语平均分都为;(2)不妨设取消的两位同学的两科成绩分别为、,由题,,,,数学成绩与英语成绩的线性回归方程.代入学号为的同学数学成绩得,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【题目点拨】本题考查平均数的计算,同时也考查了回归直线方程的求解,解题的关键就是理解最小二乘法公式,考查计算能力,属于中等题.18、(Ⅰ)对称轴方程为x,k∈Z,对称中心为(,0),k∈Z;(Ⅱ)±.【解题分析】
(Ⅰ)先利用三角恒等变换化简目标函数,然后求解对称轴和对称中心;(Ⅱ)先求出的零点,然后求解cos(x1﹣x2)的值.【题目详解】函数sin4xcos4x=sin(4x),(Ⅰ)由4x,k∈Z,可得f(x)的对称轴方程为x,k∈Z,令4xkπ,k∈Z,则x,k∈Z,∴f(x)的对称中心为(,0),k∈Z;(Ⅱ)根据函数,可得g(x)=sin(4x),的零点为x1,x2,∴sin(4x1)0,即sin(4x1),∴2sin(2x1)cos(2x1),∴,∴.由(Ⅰ)知,f(x)在内的对称轴为x,则x1+x2,∴x2x1,∴cos(x1﹣x2)=cos(x1﹣(x1)=cos(2x1)=sin(2x1)=sin(2x1)=sin(2x1)=±.【题目点拨】本题主要考查三角函数的性质及恒等变换,把目标函数化为标准型函数是求解的关键,零点的转化有一定的技巧,侧重考查逻辑推理和数学运算的核心素养.19、(Ⅰ)证明见解析;(Ⅱ).【解题分析】试题分析:(1)由题意结合柯西不等式的结论即可证得题中的结论;(2)结合(1)的结论可得绝对值不等式,零点分段求解绝对值不等式可得实数的取值范围为.试题解析:(Ⅰ)证明:由柯西不等式得,,的取值范围是.(Ⅱ)由柯西不等式得.若不等式对一切实数恒成立,则,其解集为,即实数的取值范围为.20、(1);(2)【解题分析】
(1)求得的导数,利用导数的几何意义可得切线的斜率,解方程可得;(2)依据的导数,讨论的范围,结合单调性可得最小值,解不等式即可得到所求范围.【题目详解】(1),由题设知,解得.(2)解:的定义域为,由(1)知,,(i)若,则故当,使得的充要条件为,即,解得(ii)若,则,故当时,;当时,;所以在单调递减,在单调递增,所以,存在,使得的充要条件为,所以不合题意(iii)若,则时,在上单调递减,但是,∴综上所述,的取值范围是【题目点拨】本题主要考查导数的运用:利用导数的几何意义求切线的斜率,研究单调性和极值,意在考查学生分类讨论思想、方程思想的运用能力以及数学运算能力。21、(1);(2)或【解题分析】
(1)利用三种方程的转化方法,将曲线C的极坐标方程和直线l的参数方程转化为普通方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年常州信息职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年03月上半年浙江舟山市普陀区部分事业单位公开招聘工作人员20人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年山西林业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年山东文化产业职业学院高职单招(数学)历年真题考点含答案解析
- 2025年宿迁职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宝鸡职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- IP基础知识课件下载
- 下肢静脉血栓用药护理
- 2025年天津滨海汽车工程职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年天津工程职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 赛码在线考试财务题库
- 旅行社运营实务电子课件 2.3 办理旅游交易手续
- 屁股-也许是最重要的学习器官-主题微班会
- 市政工程施工工期定额(定稿)
- 新果煤矿 矿业权价款计算结果的报告
- 监测与控制节能工程
- 2023年大学生《思想道德与法治》考试题库附答案(712题)
- 检验检测机构开展新检验项目建议审批表
- GB/T 41697-2022康复辅助器具一般要求和试验方法
- JJG 711-1990明渠堰槽流量计(试行)
- GB/T 18738-2006速溶豆粉和豆奶粉
评论
0/150
提交评论