版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃肃兰州五十一中2024届数学高二下期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《高中数学课程标准》(2017版)规定了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()(注:雷达图(RadarChart),又可称为戴布拉图、蜘蛛网图(SpiderChart),可用于对研究对象的多维分析)A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体水平优于甲2.小明同学在做市场调查时得到如下样本数据13610842他由此得到回归直线的方程为,则下列说法正确的是()①变量与线性负相关②当时可以估计③④变量与之间是函数关系A.① B.①② C.①②③ D.①②③④3.设函数()有且仅有两个极值点(),则实数的取值范围是()A. B. C. D.4.已知是周期为4的偶函数,当时,则()A.0 B.1 C.2 D.35.已知随机变量的取值为,若,,则()A. B. C. D.6.已知f(x)=2x,x<0a+log2x,x≥0A.-2 B.2 C.0 D.17.已知,,,,且满足,,,对于,,,四个数的判断,给出下列四个命题:①至少有一个数大于1;②至多有一个数大于1;③至少有一个数小于0;④至多有一个数小于0.其中真命题的是()A.①③ B.②④ C.①④ D.②③8.已知y与x及与的成对数据如下,且y关于x的回归直线方程为,则关于的回归直线方程为()x12345y2345710203040502030405070A. B. C. D.9.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为10.已知,则()A.18 B.24 C.36 D.5611.有,,,四种不同颜色的花要(全部)栽种在并列成一排的五个区域中,相邻的两个区域栽种花的颜色不同,且第一个区域栽种的是颜色的花,则不同栽种方法种数为()A.24 B.36 C.42 D.9012.“,”是“双曲线的离心率为”的()A.充要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足不等式组且的最大值为,则=_____.14.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14④他恰好有连续2次击中目标的概率为3×0.93×0.1其中正确结论的序号是______15.若,则________.16.湖面上有个相邻的小岛,,,,,现要建座桥梁,将这个小岛连接起来,共有__________不同方案.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.18.(12分)函数(1)若函数在内有两个极值点,求实数的取值范围;(2)若不等式在上恒成立,求实数的取值范围.19.(12分)设函数().(Ⅰ)当时,求不等式的解集;(Ⅱ)求证:,并求等号成立的条件.20.(12分)已知函数.(1)若,求函数的极值;(2)当时,判断函数在区间上零点的个数.21.(12分)在中,已知.(1)求角的余弦值;(2)若,边上的中线,求的面积.22.(10分)设函数.(1)求过点的切线方程;(2)若方程有3个不同的实根,求的取值范围。(3)已知当时,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据雷达图,依次判断每个选项的正误得到答案.【题目详解】根据雷达图得甲的数据分析素养低于乙,所以A错误根据雷达图得甲的数学建模素养等于数学抽象素养,所以B错误根据雷达图得乙的六大素养中数学建模和数学抽象最差,所以C错误根据雷达图得乙整体为27分,甲整体为22分,乙的六大素养整体水平优于甲,所以D正确故答案选D【题目点拨】本题考查了雷达图,意在考查学生解决问题的能力.2、C【解题分析】
根据数据和回归方程对每一个选项逐一判断得到答案.【题目详解】①变量与线性负相关,正确②将代入回归方程,得到,正确③将代入回归方程,解得,正确④变量与之间是相关关系,不是函数关系,错误答案为C【题目点拨】本题考查了回归方程的相关知识,其中中心点一定在回归方程上是同学容易遗忘的知识点.3、B【解题分析】
函数()有且仅有两个极值点,即为在上有两个不同的解,进而转化为两个图像的交点问题进行求解.【题目详解】解:因为函数()有且仅有两个极值点,所以在上有两个不同的解,即2ax+ex=0在上有两解,即直线y=-2ax与函数y=ex的图象有两个交点,设函数与函数的图象相切,切点为(x0,y0),作函数y=ex的图象,因为则,所以,解得x0=1,即切点为(1,e),此时k=e,由图象知直线与函数y=ex的图象有两个交点时,有即-2a>e,解得a<,故选B.【题目点拨】本题考查了函数极值点的问题,解决此类问题的方法是将函数问题转化为方程根的问题,再通过数形结合的思想方法解决问题.4、D【解题分析】
利用函数的周期性,化简所求函数值的自变量为已知函数的定义域中,代入求解即可.【题目详解】f(x)是周期为4的偶函数,当x∈[0,2]时f(x)=,则f(2014)+f(2015)=f(2012+2)+f(2016﹣1)=f(2)+f(﹣1)=log22+1+12=1.故选:D.【题目点拨】本题考查分段函数的应用,函数的周期性以及函数值的求法,考查计算能力.5、C【解题分析】
设,,则由,,列出方程组,求出,,即可求得.【题目详解】设,,①,又②由①②得,,,故选:C.【题目点拨】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.6、C【解题分析】
由函数fx=2x,x<0a+log2【题目详解】∵函数fx∴f(﹣1)=12∴f[f(﹣1)]=f12解得:a=0,故选:C.【题目点拨】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.7、A【解题分析】
根据对,,,取特殊值,可得②,④不对,以及使用反证法,可得结果.【题目详解】当,时,满足条件,故②,④为假命题;假设,由,,得,则,由,所以矛盾,故①为真命题,同理③为真命题.故选:A【题目点拨】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.8、D【解题分析】
先由题意求出与,根据回归直线过样本中心,即可得出结果.【题目详解】由题意可得:,,因为回归直线方程过样本中心,根据题中选项,所以关于的回归直线方程为.故选D【题目点拨】本题主要考查回归直线方程,熟记回归直线方程的意义即可,属于常考题型.9、A【解题分析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、B【解题分析】,故,.11、B【解题分析】分析:可以直接利用树状图分析解答.详解:这一种有12种,类似AC,各有12种,共36种,故答案为:B.点睛:(1)本题主要考查排列组合,考查计数原理,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)本题可以利用排列组合解答,分类讨论比较复杂.也可以利用树状图解答,比较直观.12、D【解题分析】
当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【题目详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【题目点拨】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.14、①③【解题分析】分析:由题意知射击一次击中目标的概率是0.9,得到第3次击中目标的概率是0.9,连续射击4次,且他各次射击是否击中目标相互之间没有影响,得到是一个独立重复试验,根据独立重复试验的公式即可得到结果.详解:射击一次击中目标的概率是0.9,第3次击中目标的概率是0.9,①正确;连续射击4次,且各次射击是否击中目标相互之间没有影响,本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是,②不正确;至少击中目标1次的概率是1-0.14③正确;恰好有连续2次击中目标的概率为,④不正确.故答案为:①③.点睛:本题主要考查了独立重复试验,以及n次独立重复试验中恰好发生k次的概率.15、【解题分析】
利用诱导公式与二倍角的余弦公式可得,计算求得结果.【题目详解】,则,故答案为.【题目点拨】三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16、135【解题分析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见解析.【解题分析】分析:(I)由题意,可取,则,,即可猜想;(II)令,则,得到函数的单调性,利用单调性即可证明猜想.详解:(I)取,则,,则有;再取,则,,则有.故猜想.(II)令,则,当时,,即函数在上单调递减,又因为,所以,即,故.点睛:本题主要考查了归纳猜想和利用函数的单调性证明不等关系式,着重考查了分析问题和解答问题的能力,以及推理论证能力.18、(1)或.(2)【解题分析】
(1)先对函数求导、然后因式分解,根据函数在在内有两个极值点列不等式组,解不等式组求得的取值范围.(2)先对函数求导并因式分解.对分成三种情况,利用的单调性,结合不等式在上恒成立列不等式组,解不等式组求得的取值范围.【题目详解】解:(1)由题意知,.有得:或.(2).①当时,,符合题意.②当时,令,得或,此时函数的增区间为,减区间为.此时只需:解得:或,故.③当时,令,得或,此时函数的增区间为,,减区间为,此时只需:解得:,故,由上知实数的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调区间、极值,考查利用导数求解不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,综合性很强,属于难题.19、(Ⅰ)(Ⅱ)见证明【解题分析】
(Ⅰ)把代入不等式中,利用零点进行分类讨论,求解出不等式的解集;(Ⅱ)证法一:对函数解析式进行变形为,,显然当时,函数有最小值,最小值为,利用基本不等式,可以证明出,并能求出等号成立的条件;证法二:利用零点法把函数解析式写成分段函数形式,求出函数的单调性,最后求出函数的最小值,以及此时的的值.【题目详解】解:(Ⅰ)当时,原不等式等价于,当时,,解得当时,,解得当时,,无实数解原不等式的解集为(Ⅱ)证明:法一:,当且仅当时取等号又,当且仅当且时,即时取等号,,等号成立的条件是法二:在上单调递减,在上单调递增,等号成立的条件是【题目点拨】本题考查了绝对值不等式的解法以及证明绝对值不等式,利用零点法,分类讨论是解题的关键.20、(1)详见解析;(2)详见解析.【解题分析】
试题分析:(1)求导数得,又,所以,由此可得函数的单调性,进而可求得极值;(2)由,得.因此分和两种情况判断函数的单调性,然后根据零点存在定理判断函数零点的个数.试题解析:(1)∵,∴,因为,所以,当x变化时,的变化情况如下表:100递增极大值递减极小值递增由表可得当时,有极大值,且极大值为,当时,有极小值,且极小值为.(2)由(1)得.∵,∴.①当时,在上单调递增,在上递减又因为所以在(0,1)和(1,2)上各有一个零点,所以上有两个零点.②当,即时,在上单调递增,在上递减,在上递增,又因为所以在上有且只有一个零点,在上没有零点,所以在上有且只有只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版模具材料供应与设备租赁合作协议2篇
- 美甲店二零二五年度供应链管理及采购合同4篇
- 小学高年级学生的自主学习能力在语文教学中的培养策略
- 智慧办公启迪思维提升工作效率的新方法
- 2025版事业单位管理岗位聘用合同范本3篇
- 2025年新型停车场运营管理服务出租协议4篇
- 2025年度跨境电商进口米面粮油品牌代理合同4篇
- 2025年度民用爆破工程爆破作业人员资质认证合同4篇
- 2025版信托资金借贷合同税收优惠条款范本3篇
- 娃娃机社交媒体营销合同(二零二五)2篇
- 南通市2025届高三第一次调研测试(一模)地理试卷(含答案 )
- 2025年上海市闵行区中考数学一模试卷
- IF钢物理冶金原理与关键工艺技术1
- 销售提成对赌协议书范本 3篇
- 劳务派遣招标文件范本
- 信息安全意识培训课件
- Python试题库(附参考答案)
- 碳排放管理员 (碳排放核查员) 理论知识考核要素细目表三级
- 2024年河北省中考数学试题(含答案解析)
- 小学二年级数学口算练习题1000道
- 纳布啡在产科及分娩镇痛的应用
评论
0/150
提交评论