![云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/05/07/wKhkGWW_vEeACi5IAAHigO5yAco463.jpg)
![云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/05/07/wKhkGWW_vEeACi5IAAHigO5yAco4632.jpg)
![云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/05/07/wKhkGWW_vEeACi5IAAHigO5yAco4633.jpg)
![云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/05/07/wKhkGWW_vEeACi5IAAHigO5yAco4634.jpg)
![云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/05/07/wKhkGWW_vEeACi5IAAHigO5yAco4635.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省西双版纳州勐海县一中2024届数学高二第二学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.利用反证法证明“若,则”时,假设正确的是()A.都不为2 B.且都不为2C.不都为2 D.且不都为22.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记,若在D上恒成立,则称在D上为凸函数.以下四个函数在上不是凸函数的是()A. B.C. D.3.已知向量,,若与垂直,则()A.2 B.3 C. D.4.设则()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于25.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件6.设,,,则的值分别为()A.18, B.36, C.36, D.18,7.某城市关系要好的,,,四个家庭各有两个小孩共人,分别乘甲、乙两辆汽车出去游玩,每车限坐名(乘同一辆车的名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的名小孩恰有名来自于同一个家庭的乘坐方式共有()A.种 B.种 C.种 D.种8.在的二项展开式中,的系数为()A. B. C. D.9.下列三句话按“三段论”模式排列顺序正确的是()①是周期函数;②三角函数是周期函数;③是三角函数A.②③① B.②①③ C.①②③ D.③②①10.设关于的不等式组表示的平面区域内存在点满足,则的取值范围是()A. B. C. D.11.设是函数的定义域,若存在,使,则称是的一个“次不动点”,也称在区间I上存在“次不动点”.若函数在上存在三个“次不动点”,则实数的取值范围是()A. B. C. D.12.设,,都为大于零的常数,则的最小值为()。A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点到准线的距离为________.14.用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容器,若衔接部分忽略不计,则该容器的容积为________立方分米.15.若,则展开式中的常数项为______。16.已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某仪器配件质量采用值进行衡量,某研究所采用不同工艺,开发甲、乙两条生产线生产该配件,为调查两条生产线的生产质量,检验员每隔分别从两条生产线上随机抽取一个配件,测量并记录其值,下面是甲、乙两条生产线各抽取的30个配件值茎叶图.经计算得,,,,其中分别为甲,乙两生产线抽取的第个配件的值.(1)若规定的产品质量等级为合格,否则为不合格.已知产品不合格率需低于,生产线才能通过验收,利用样本估计总体,分析甲,乙两条生产线是否可以通过验收;(2)若规定时,配件质量等级为优等,否则为不优等,试完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“配件质量等级与生产线有关”?产品质量等级优等产品质量等级不优等合计甲生产线乙生产线合计附:0.100.050.010.0012.7063.8416.63510.82818.(12分)“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:男性女性合计20~35岁4010036~50岁4090合计10090190(1)求统计数据表中的值;(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.参考数表:参考公式:,.19.(12分)已知函数的图象过点.(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.20.(12分)某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积(单位:平方米,)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的分布列与数学期望;(3)根据散点图选择和两个模型讲行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如表所示:0.0054590.0058860.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:,,,,,参考公式:21.(12分)已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于两点,若(为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.22.(10分)已知过点P(m,0)的直线l的参数方程是x=32t+my=12t(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为(Ⅱ)若直线l与曲线C交于两点A,B,且|PA|⋅|PB|=1,求实数m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据反证法的知识,选出假设正确的选项.【题目详解】原命题的结论是“都为2”,反证时应假设为“不都为2”.故选:C【题目点拨】本小题主要考查反证法的知识,属于基础题.2、D【解题分析】
对A,B,C,D四个选项逐个进行二次求导,判断其在上的符号即可得选项.【题目详解】若,则,在上,恒有;若,则,在上,恒有;若,则,在上,恒有;若,则.在上,恒有,故选D.【题目点拨】本题主要考查函数的求导公式,充分理解凸函数的概念是解题的关键,属基础题.3、B【解题分析】分析:先求出的坐标,然后根据向量垂直的结论列出等式求出x,再求即可.详解:由题可得:故选B.点睛:考查向量的坐标运算,向量垂直关系和模长计算,正确求解x是解题关键,属于基础题.4、C【解题分析】
由基本不等式,a,b都是正数可解得.【题目详解】由题a,b,c都是正数,根据基本不等式可得,若,,都小于2,则与不等式矛盾,因此,至少有一个不小于2;当,,都等于2时,选项A,B错误,都等于3时,选项D错误.选C.【题目点拨】本题考查了基本不等式,此类题干中有多个互为倒数的项,一般都可以先用不等式求式子范围,再根据题目要求解题.5、A【解题分析】试题分析:画圆:(x–1)2+(y–1)2=2,如图所示,则(x–1)2+(y–1)2≤2表示圆及其内部,设该区域为M.画出表示的可行域,如图中阴影部分所示,设该区域为N.可知N在M内,则p是q的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论.6、A【解题分析】
由ξ~B(n,p),Eξ=12,Dξ=4,知np=12,np(1﹣p)=4,由此能求出n和p.【题目详解】∵Eξ=12,Dξ=4,∴np=12,np(1﹣p)=4,∴n=18,p.故选A.【题目点拨】本题考查离散型随机变量的期望和方差,解题时要注意二项分布的性质和应用.7、B【解题分析】若A户家庭的李生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有种方法.若A户家庭的李生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有.所以共有12+12=24种方法.本题选择B选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.8、C【解题分析】
因为,可得时,的系数为,C正确.9、A【解题分析】
根据“三段论”的排列模式:“大前提”“小前提”“结论”,分析即可得到正确的顺序.【题目详解】根据“三段论”的排列模式:“大前提”“小前提”“结论”,可知:①是周期函数是“结论”;②三角函数是周期函数是“大前提”;③是三角函数是“小前提”;故“三段论”模式排列顺序为②③①.故选:A【题目点拨】本题考查了演绎推理的模式,需理解演绎推理的概念,属于基础题.10、D【解题分析】
由约束条件,作出可行域如上图所示阴影部分,要使可行域存在,必有,可行域包括上的点,只要边界点在直线的上方,且在直线的下方,故有,解得,选D.点睛:平面区域的最值问题是线性规划的一类重要题型,在解答本题时,关键是画好可行域,分析目标函数的几何意义,然后利用数形结合的思想,找出点的坐标,即可求出答案.11、A【解题分析】
由已知得在上有三个解。即函数有三个零点,求出,利用导函数性质求解。【题目详解】因为函数在上存在三个“次不动点”,所以在上有三个解,即在上有三个解,设,则,由已知,令得,即或当时,,;,,要使有三个零点,则即,解得;当时,,;,,要使有三个零点,则即,解得;所以实数的取值范围是故选A.【题目点拨】本题考查方程的根与函数的零点,以及利用导函数研究函数的单调性,属于综合体。12、B【解题分析】
由于,乘以,然后展开由基本不等式求最值,即可求解.【题目详解】由题意,知,可得,则,所以当且仅当,即时,取等号,故选:B.【题目点拨】本题主要考查了利用基本不等式求最值问题,其中解答中根据题意给要求的式子乘以是解决问题的关键,着重考查了分析问题和解答问题的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,所以,所以抛物线的焦点到准线的距离为.14、【解题分析】
先由题意得到半圆形的弧长为,设制作的圆锥形容器的底面半径为,求出底面半径与圆锥的高,从而可求出结果.【题目详解】半径为2分米的半圆形的弧长为,设制作的圆锥形容器的底面半径为,则,则;则圆锥形容器的高为,所以容器的容积为.故答案为:【题目点拨】本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于常考题型.15、-1【解题分析】
根据定积分求出a的值,再利用二项式展开式的通项公式求出常数项的值.【题目详解】若,
则,即a=2,
∴展开式的通项公式为:令6-2r=0,解得r=3;
∴展开式的常数项为:
故答案为:-1.【题目点拨】本题考查了二项式展开式的通项公式与定积分的计算问题,是基础题目.16、【解题分析】
利用导数求出切线斜率,根据点斜式求得切线方程,将圆心坐标代入切线方程,进而可得结果.【题目详解】因为,,切线的斜率,所以切线方程为,即.因为圆的圆心为,所以,所以实数的值为-4,故答案为-4.【题目点拨】本题主要考查利用导数求曲线切线方程,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)甲生产线可以通过验收,乙生产线不能通过验收;(2)不能.【解题分析】
(1)甲生产线的不合格率为,小于,故甲生产线可以通过验收.乙生产线的不合格率约为,大于,故乙生产线不能通过验收;(2)根据提供的数据得到列联表;计算出,根据临界值表可得答案.【题目详解】(1)由参考数据得,故甲生产线抽取的30个配件中,不合格的有1个利用样本估计总体,甲生产线的不合格率估计为,小于由参考数据得,故乙生产线抽取的30个配件中,不合格的有2个利用样本估计总体,乙生产线的不合格率估计为,大于所以甲生产线可以通过验收,乙生产线不能通过验收.(2)由参考数据得,,;,.统计两条生产线检测的60个数据,得到列联表.产品质量等级优等产品质量等级不优等小计甲生产线28230乙生产线24630小计52860所以,不能在犯错概率不超过0.1的前提下认为配件质量等级与生产线有关.【题目点拨】本题考查了概率的计算和独立性检验,考查计算能力,属中档题.18、(1),.(2);(3)答案见解析.【解题分析】试题分析:(1)由题意结合题中所给的列联表可得,.(2)由题意结合二项分布的概率公式可得恰有一名女性的概率是;(3)利用独立性检验的结论求得.所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.试题解析:(1),.(2)依题意得,每一次抽到女性的概率,故抽取的3人中恰有一名女性的概率.(3).所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.19、(1),值域为(2)(3)【解题分析】试题分析:(1)根据在图象上,代入计算即可求解,因为,所以,所以,可得函数的值域为;(2)原方程等价于的图象与直线有交点,先证明的单调性,可得到的值域,从而可得实数的取值范围;(3)根据,,转化为二次函数最大值问题,讨论函数的最大值,求解实数即可.试题解析:(1)因为函数的图象过点,所以,即,所以,所以,因为,所以,所以,所以函数的值域为.(2)因为关于的方程有实根,即方程有实根,即函数与函数有交点,令,则函数的图象与直线有交点,又任取,则,所以,所以,所以,所以在R上是减函数(或由复合函数判断为单调递减),因为,所以,所以实数的取值范围是.(3)由题意知,,令,则,当时,,所以,当时,,所以(舍去),综上,存在使得函数的最大值为0.20、(1);(2)1.2;(3)模型的拟合效果更好,预
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度职工食堂员工餐饮补贴政策咨询合同
- 2025年度人工智能合伙合作合同范本(前沿技术)
- 2025年度智慧社区物业费计算及增值服务合同
- 2025年度海员船舶救生劳务合同范本
- 2025年度抵押贷款合同范本:抵押物借条(2024版)
- 二零二四年旅游服务业应收账款质押租赁合同3篇
- 2025年度商业大厦物业管理与客户关系管理合同
- 二零二五年度场监管委天津安全生产事故应急预案编制合同4篇
- 2025年度国际贸易实务第二章国际货物买卖合同
- 2025年环卫车辆租赁及配套设施租赁合同范本
- 励志课件-如何做好本职工作
- 2024年山东省济南市中考英语试题卷(含答案解析)
- 2025中考英语作文预测:19个热点话题及范文
- 静脉治疗护理技术操作标准(2023版)解读 2
- 2024年全国各地中考试题分类汇编(一):现代文阅读含答案
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- 武强县华浩数控设备科技有限公司年产9000把(只)提琴、吉他、萨克斯等乐器及80台(套)数控雕刻设备项目环评报告
- 安全生产法律法规汇编(2024年4月)
- DB11∕T 882-2023 房屋建筑安全评估技术规程
- 华为员工股权激励方案
- 卫生院安全生产知识培训课件
评论
0/150
提交评论