2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题含解析_第1页
2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题含解析_第2页
2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题含解析_第3页
2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题含解析_第4页
2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州市番禺区禺山中学数学高二下期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,在集合内随机取一个元素,则这个元素属于集合的概率为()A. B. C. D.2.已知为双曲线的右焦点,过原点的直线与双曲线交于,两点,若且的周长为,则该双曲线的离心率为()A. B. C. D.3.已知为虚数单位,复数满足,在复平面内所对的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.函数在上的图象大致是()A. B.C. D.5.随机抛掷一枚骰子,则所得骰子点数的期望为()A.0.6 B.1 C.3.5 D.26.若a>b>0,0<c<1,则A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb7.已知圆(x+1)2+y2=12的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若圆C上存在点Q使∠CPQ=A.1-306C.0,1258.以下四个命题中,真命题的是()A.B.“对任意的”的否定是“存在”C.,函数都不是偶函数D.中,“”是“”的充要条件9.已知曲线:,:,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线10.函数的定义域为()A. B. C. D.11.在二项式的展开式中,各项系数之和为,二项式系数之和为,若,则()A. B. C. D.12.已知随机变量,其正态分布密度曲线如图所示,若向长方形中随机投掷1点,则该点恰好落在阴影部分的概率为()附:若随机变量,则,.A.0.1359 B.0.7282 C.0.6587 D.0.8641二、填空题:本题共4小题,每小题5分,共20分。13.已知(是虚数单位),定义:给出下列命题:(1)对任意都有(2)若是的共轭复数,则恒成立;(3)若则(4)对任意结论恒成立.则其中所有的真命题的序号是_____________.14.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.15.已知平面向量满足,,则的最大值是____.16.有7张卡片分别写有数字从中任取4张,可排出不同的四位数的个数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点为,过作互相垂直的直线,分别与交于点、和、.(1)当的倾斜角为时,求以为直径的圆的标准方程;(2)问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.18.(12分)近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:对优惠活动好评对优惠活动不满意合计对车辆状况好评对车辆状况不满意合计(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.参考数据:参考公式:,其中.19.(12分)已知函数.(1)若函数在处取得极值,求的值和函数的单调区间;(2)若关于的不等式在上恒成立,求实数的取值范围.20.(12分)已知复数满足,在复平面上对应点的轨迹为,、分别是曲线的上、下顶点,是曲线上异于、的一点.(1)求曲线的方程;(2)若在第一象限,且,求的坐标;(3)过点作斜率为的直线分别交曲线于另一点,交轴于点.求证:存在常数,使得恒成立,并求出的值.21.(12分)如图,在四棱锥中,平面,底面是正形,,为的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)如图,有一块半径为的半圆形空地,开发商计划征地建一个矩形游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心,在圆的直径上,在圆周上.(1)设,征地面积记为,求的表达式;(2)当为何值时,征地面积最大?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用线性规划可得所在区域三角形的面积,求得圆与三角形的公共面积,利用几何概型概率公式可得结果.【题目详解】表示如图所示的三角形,求得,,点到直线的距离为,所以,既在三角形内又在圆内的点的轨迹是如图所示阴影部分的面积,其面积等于四分之三圆面积与等腰直角三角形的面积和,即为,所以在集合内随机取一个元素,则这个元素属于集合的概率为,故选D.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.2、D【解题分析】

设双曲线的另一个焦点为,则根据双曲线的对称性得为矩形,,由条件可得,由双曲线的定义,再由勾股定理可解得离心率.【题目详解】设双曲线的另一个焦点为,由.根据双曲线的对称性得为矩形,如图,.又的周长为,则…………①.由双曲线的定义………………②由①,②得.在直角三角形中,.则,即,所以.故选:D【题目点拨】本题考查双曲线的对称性和定义,求双曲线的离心率,属于难题.3、B【解题分析】

化简得到,得到答案.【题目详解】,故,故对应点在第二象限.故选:.【题目点拨】本题考查了复数的化简,对应象限,意在考查学生的计算能力.4、A【解题分析】对函数进行求导:,由可得:,即函数在区间上是增函数,在区间和区间上是减函数,观察所给选项,只有A选项符合题意.本题选择A选项.5、C【解题分析】

写出分布列,然后利用期望公式求解即可.【题目详解】抛掷骰子所得点数的分布列为123456所以.故选:.【题目点拨】本题考查离散型随机变量的分布列以及期望的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.7、C【解题分析】

问题转化为C到直线l的距离d⩽4.【题目详解】如图所示:过P作圆C的切线PR,切点为R,则∠CPQ⩽∠CPR,∴sin60°⩽sin∴CPmin⩽4,则C到直线l∴|-m-0-5m+4|m2故选:C.【题目点拨】本题考查了直线与圆的位置关系,属中档题.8、D【解题分析】

解:A.若sinx=tanx,则sinx=tanx,∵x∈(0,π),∴sinx≠0,则1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故∃x∈(0,π),使sinx=tanx错误,故A错误,B.“对任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B错误,C.当θ时,f(x)=sin(2x+θ)=sin(2x)=cos2x为偶函数,故C错误,D.在△ABC中,C,则A+B,则由sinA+sinB=sin(B)+sin(A)=cosB+cosA,则必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,两边平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,则2A=2B或2A=π﹣2B,即A=B或A+B,当A=B时,sinA+sinB=cosA+cosB等价为2sinA=2cosA,∴tanA=1,即A=B,此时C,综上恒有C,即充分性成立,综上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要条件,故D正确,故选D.考点:全称命题的否定,充要条件等9、C【解题分析】

由题意利用诱导公式得,根据函数的图象变换规律,得出结论.【题目详解】已知曲线,,∴把上各点的横坐标缩短到原来的倍,纵坐标不变,可得的图象,再把得到的曲线向左平移个单位长度,得到曲线的图象,故选C.【题目点拨】本题主要考查函数的图象变换规律,属于基础题.10、D【解题分析】

分析每个根号下的范围,取交集后得到定义域.【题目详解】因为,所以,则定义域为.故选:D.【题目点拨】本题考查函数含根号的函数定义问题,难度较易.注意根号下大于等于零即可.11、A【解题分析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得,最后根据解出详解:因为各项系数之和为,二项式系数之和为,因为,所以,选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.12、D【解题分析】

根据正态分布密度曲线的对称性和性质,再利用面积比的几何概型求解概率,即得解.【题目详解】由题意,根据正态分布密度曲线的对称性,可得:故所求的概率为,故选:D【题目点拨】本题考查了正态分布的图像及其应用,考查了学生概念理解,转化与划归的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(2),(4)【解题分析】

由新定义逐一核对四个命题得答案.【题目详解】解:对于(1),当时,,命题(1)错误;

对于(2),设,则,则,命题(2)正确;

对于(3),若,则错误,如,满足,但;

对于(4),设,

则,

由,

得恒成立,(4)正确.

∴正确的命题是(2)(4).

故答案为(2),(4).【题目点拨】本题是新定义题,考查了命题的真假判断与应用,考查了绝对值的不等式,是中档题.14、【解题分析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.15、2【解题分析】

根据已知条件可设出的坐标,设,,,利用向量数量积的坐标表示,即求的最大值,根据,可得出的轨迹方程,从而求出最大值.【题目详解】设,,,,点是以为圆心,1为半径的圆,,,的最大值是2.故填:2.【题目点拨】本题考查了向量数量积的应用,以及轨迹方程的综合考查,属于中档题型,本题的关键是根据条件设出坐标,转化为轨迹问题.16、114【解题分析】

根据题意,按取出数字是否重复分4种情况讨论:①、取出的4张卡片中没有重复数字,即取出的4张卡片中的数字为1、2、3、4;②、取出的4张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的4张卡片为2张1和2张2;④、取出的4张卡片种有3个重复数字,则重复的数字为1.分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得答案.【题目详解】根据题意,分4种情况讨论:(1)取出的4张卡片中没有重复数字,即取出的4张卡片中的数字为1、2、3、4,此时=24种顺序,可以排出24个四位数;(2)取出的4张卡片中有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2、3、4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出3×12=36个四位数,同理,若重复的数字为2,也可以排出36个重复数字;(3)若取出的4张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排两个2,则可以排出6×1=6个四位数;(4)取出的4张卡片中有3个重复数字,则重复的数字为1,在2、3、4中取出1个卡片,有种取法,安排在四个位置中,有种情况,剩余位置安排1,可以排出3×4=12个四位数;所以一共有24+36+36+6+12=114个四位数.故答案为:114.【题目点拨】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率,难度较难.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,使得恒成立,详见解析【解题分析】

(1)由题意可设的方程为,代入可得,通过韦达定理与中点坐标公式求出的中点坐标,即圆心坐标,由焦点弦公式求出直径,进而得出答案。(2))假设存在常数,设直线的方程为,则直线的方程为.将的方程代入得:,利用韦达定理与弦长公式可得,,列式解出常数【题目详解】解:(1)由题意可设的方程为,代入可得.所以,由韦达定理得,所以所以的中点坐标为,即圆心坐标为又,所以半径所以以为直径的圆的方程为.(2)假设存在常数,使得恒成立.设直线的方程为,则直线的方程为.将的方程代入得:.由韦达定理得:,,所以.同理可得.所以.因此,存在,使得恒成立.【题目点拨】本类题型常用的方法是设而不求法,即设出直线与圆锥曲线的交点坐标,将直线方程与圆锥曲线方程联立,利用韦达定理,弦长公式等结合题意解答。18、(1)在犯错误的概率不超过的前提下,不能认为优惠活动好评与车辆状况好评有关系.(2)分布列见解析;(元).【解题分析】试题分析:(1)由题意求得的值,然后即可确定结论;

(2)由题意首先求得分布列,然后求解数学期望即可.试题解析(1)由列联表的数据,有.因此,在犯错误的概率不超过的前提下,不能认为优惠活动好评与车辆状况好评有关系.(2)由题意,可知一次骑行用户获得元的概率为.的所有可能取值分别为,,,,.∵,,,,,∴的分布列为:的数学期望为(元).19、(1),函数的单调递增区间是和,单调递减区间是;(2).【解题分析】试题分析:(1)由,解得令得减区间,得增区间;(2)关于的不等式在上恒成立,等价于函数的最小值大于等于零..试题解析:(Ⅰ)由题意知,,且,解得.此时,令,解得或,令,解得,则函数的单调递增区间是和,单调递减区间是(Ⅱ),当时,在上恒成立,则函数在区间上单调递增,∴当时,;当时,令,解得,令,解得,则函数在区间()上单调递减,在上单调递增,,即,解得;综上所述,实数的取值范围为.20、(1);(2);(3)证明见解析,.【解题分析】

(1)根据复数模的几何意义以及椭圆的定义可得出曲线为椭圆,并设曲线的方程为,求出、的值,可得出曲线的方程;(2)设点的坐标为,根据以及得出关于、的方程组,解出这两个未知数,即可得出点的坐标;(3)设直线的方程为,设点、,将直线的方程与曲线的方程联立,并列出韦达定理,求出点的坐标,并求出、、、的表达式,结合韦达定理可求出的值.【题目详解】(1)设复数,由可知,复平面内的动点到点、的距离之和为,且有,所以,曲线是以点、为左、右焦点的椭圆,设曲线的方程为,则,,.因此,曲线的方程为;(2)设点的坐标为,则,又点在曲线上,所以,解得,因此,点的坐标为;(3)设直线的方程为,点、,直线交轴于点,将直线的方程与曲线的方程联立得,消去,得,得由韦达定理得,.,,,,因此,.【题目点拨】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论