版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省淮北市相山区一中数学高二下期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个命题中,其中错误的个数是()①经过球面上任意两点,可以作且只可以作一个大圆;②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;③球的面积是它大圆面积的四倍;④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.A.0 B.1 C.2 D.32.设,,,则大小关系是()A. B.C. D.3.已知某随机变量的概率密度函数为则随机变量落在区间内在概率为()A. B. C. D.4.某部门将4名员工安排在三个不同的岗位,每名员工一个岗位,每个岗位至少安排一名员工,且甲乙两人不安排在同一岗位,则不同的安排方法共有()A.66种 B.36种 C.30种 D.24种5.定义在上的函数的导函数在的图象如图所示,则函数在的极大值点个数为()A.1 B.2 C.3 D.46.已知函数满足,函数.若函数与的图象共有个交点,记作,则的值为A. B. C. D.7.若实数满足约束条件,且最大值为1,则的最大值为()A. B. C. D.8.为得到函数的图象,只需将函数图象上所有的点()A.横坐标缩短到原来的倍B.横坐标伸长到原来的倍C.横坐标缩短到原来的倍,再向右平移个单位D.横坐标伸长到原来的倍,再向右平移个单位9.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)10.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.11.已知函数的图象如图,则与的关系是:()A. B.C. D.不能确定12.已知幂函数的图象关于y轴对称,且在上是减函数,则()A.- B.1或2 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式(,且)的解集是,则的取值的集合是_________.14.己知函数,则不等式的解集是_______.15.已知过抛物线的焦点F的直线交该抛物线于A、B两点,,则=_____.16.函数的定义域为,导函数在内的图像如图所示,则函数在内有________个极大值点。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求函数的单调区间;(2)若的极小值点,求实数a的取值范围.18.(12分)唐代饼茶的制作一直延续至今,它的制作由“炙”、“碾”、“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是,,;能通过“碾”这道工序的概率分别是,,;由于他们平时学徒刻苦,都能通过“罗”这道工序;若这三道工序之间通过与否没有影响,(Ⅰ)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率,(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数的分布列.19.(12分)设λ是正实数,(1+λx)20的二项展开式为a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20,…,均为常数(1)若a3=12a2,求λ的值;(2)若a5≥an对一切n∈{0,1,…,20}均成立,求λ的取值范围.20.(12分)如图,在四棱锥中,底面为菱形,,,为线段的中点,为线段上的一点.(1)证明:平面平面.(2)若,二面角的余弦值为,求与平面所成角的正弦值.21.(12分)某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.产品质量/毫克频数(Ⅰ)以样本的频率作为概率,试估计从甲流水线上任取件产品,求其中不合格品的件数的数学期望.甲流水线乙流水线总计合格品不合格品总计(Ⅱ)由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装合格与两条自动包装流水线的选择有关?(Ⅲ)由乙流水线的频率分布直方图可以认为乙流水线生产的产品质量服从正态分布,求质量落在上的概率.参考公式:参考数据:参考公式:,其中.22.(10分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【题目详解】对于①,若两点是球的一条直径的端点,则可以作无数个球的大圆,故①错;
对于②三部分的面积都是,故②正确对于③,球面积=,是它大圆面积的四倍,故③正确;
对于④,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故④错.
所以①④错误.
所以C选项是正确的.【题目点拨】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.2、A【解题分析】
根据三个数的特征,构造函数,求导,判断函数的单调性,利用函数的单调性可以判断出的大小关系.【题目详解】解:考查函数,则,在上单调递增,,,即,,故选A.【题目点拨】本题考查了通过构造函数,利用函数的单调性判断三个数大小问题,根据三个数的特征构造函数是解题的关键.3、B【解题分析】
求概率密度函数在(1,3)的积分,求得概率.【题目详解】由随机变量X的概率密度函数的意义得,故选B.【题目点拨】随机变量的概率密度函数在某区间上的定积分就是随机变量在这一区间上概率.4、C【解题分析】
根据分步乘法计数原理,第一步先将4名员工分成3组并去掉甲乙同组的情况,第二步将3组员工安排到3个不同的岗位。【题目详解】解:由题意可得,完成这件事分两步,第一步,先将4名员工分成3组并去掉甲乙同组的情况,共有种,第二步,将3组员工安排到3个不同的岗位,共有种,∴根据分步乘法计数原理,不同的安排方法共有种,故选:C.【题目点拨】本题主要考查计数原理,考查组合数的应用,考查不同元素的分配问题,通常用除法原理,属于中档题.5、B【解题分析】
由导数与极大值之间的关系求解.【题目详解】函数在极大值点左增右减,即导数在极大值点左正右负,观察导函数图象,在上有两个有两个零点满足.故选:B.【题目点拨】本题考查导数与极值的关系.属于基础题.6、A【解题分析】分析:根据题意求解,的对称中心点坐标的关系,即两个图象的交点的关系,即可解得答案详解:函数满足,即函数关于点对称函数即函数关于点对称函数与的图象共有个交点即在两边各有个交点,则共有组,故,故选点睛:本题结合函数的对称性考查了函数交点问题,在解答此类题目时先通过化简求得函数的对称中心,再由交点个数结合图像左右各一半,然后求和,本题有一定难度,解题方法需要掌握。7、A【解题分析】
首先画出可行域,根据目标函数的几何意义得到,再利用基本不等式的性质即可得到的最大值.【题目详解】由题知不等式组表示的可行域如下图所示:目标函数转化为,由图易得,直线在时,轴截距最大.所以.因为,即,当且仅当,即,时,取“”.故选:A【题目点拨】本题主要考查基本不等式求最值问题,同时考查了线性规划,属于中档题.8、A【解题分析】分析:先将三角函数化为同名函数然后根据三角函数伸缩规则即可.详解:由题可得:,故只需横坐标缩短到原来的倍即可得,故选A.点睛:考查三角函数的诱导公式,伸缩变换,对公式的正确运用是解题关键,属于中档题.9、B【解题分析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.10、A【解题分析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.11、B【解题分析】
通过导数的几何意义结合图像即得答案.【题目详解】由于导数表示的几何意义是切线斜率,而由图可知,在A处的切线倾斜角小于在B处切线倾斜角,且都在第二象限,故,答案为B.【题目点拨】本题主要考查导数的几何意义,比较基础.12、C【解题分析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意可得当x=时,4x=log2ax,由此求得a的值.【题目详解】∵关于x的不等式4x<log2ax(a>0,且a≠)的解集是{x|0<x<},则当x=时,4x=log2ax,即2=log2a,∴(2a)2=,∴2a=,∴a=,故答案为.【题目点拨】本题主要考查指数不等式、对数不等式的解法,体现了转化的数学思想,属于中档题.14、【解题分析】
根据题意,分析可得函数f(x)=x2(2x﹣2﹣x)为奇函数且在R上是增函数,则不等式f(2x+1)+f(1)0可以转化为2x+1﹣1,解可得x的取值范围,即可得答案.【题目详解】根据题意,对于函数f(x)=x2(2x﹣2﹣x),有f(﹣x)=(﹣x)2(2﹣x﹣2x)=﹣x2(2x﹣2﹣x)=﹣f(x),则函数f(x)为奇函数,函数f(x)=x2(2x﹣2﹣x),其导数f′(x)=2x(2x﹣2﹣x)+x2•ln2(2x+2﹣x)>0,则f(x)为增函数;不等式f(2x+1)+f(1)0⇒f(2x+1)﹣f(1)⇒f(2x+1)f(﹣1)⇒2x+1﹣1,解可得x﹣1;即f(2x+1)+f(1)0的解集是[﹣1,+∞);故答案为[﹣1,+∞).【题目点拨】本题主要考查不等式的求解,利用条件判断函数的奇偶性和单调性,以及利用奇偶性和单调性的性质将不等式进行转化是解决本题的关键.15、2【解题分析】试题分析:焦点坐标,准线方程,由|AF|=2可知点A到准线的距离为2,所以轴,考点:抛物线定义及直线与抛物线相交的弦长问题点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,依据定义可实现两个距离的转化16、【解题分析】
先记导函数与轴交点依次是,且;根据导函数图像,确定函数单调性,进而可得出结果.【题目详解】记导函数与轴交点依次是,且;由导函数图像可得:当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;当时,,则单调递减;所以,当或,原函数取得极大值,即极大值点有两个.故答案为2【题目点拨】本题主要考查导函数与原函数间的关系,熟记导数的方法研究函数单调性与极值即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调减区间为,单调增区间为(2)【解题分析】
(1)将参数值代入得到函数的表达式,将原函数求导得到导函数,根据导函数的正负得到函数的单调区间;(2),因为是的极小值点,所以,得到;分情况讨论,每种情况下是否满足x=1是函数的极值,进而得到结果.【题目详解】(1)由题由,得由,得;由,得的单调减区间为,单调增区间为(2),因为是的极小值点,所以,即,所以1°当时,在上单调递减;在上单调递增;所以是的极小值点,符合题意;2°当时,在上单调递增;在上单调递减;在上单调递增;所以是的极小值点,符合题意;3°当时,在上单调递增,无极值点,不合题意4°当时,在上单调递增;在上单调递减;在上单调递增;所以是的极大值点,不符合题意;综上知,所求的取值范围为【题目点拨】这个题目考查了导数在研究函数的极值和单调性中的应用,极值点即导函数的零点,但是必须是变号零点,即在零点两侧导数值正负相反;极值即将极值点代入原函数取得的函数值,注意分清楚这些概念,再者对函数求导后如果出现二次,则极值点就是导函数的两个根,可以结合韦达定理应用解答.18、(Ⅰ)0.35;(Ⅱ)详见解析.【解题分析】
(Ⅰ)甲、乙、丙中恰好有一人通过,可分为:甲过,乙、丙不过;乙过,甲、丙不过;丙过,乙、甲不过。(Ⅱ)先求出甲、乙、丙制成饼茶的概率,,.随机变量的可能取值为,,,,分别求出其概率,写出分布列即可。【题目详解】解:(I)设,,分别表示事件“甲、乙、丙通过“炙”这道工序”,则所求概率(II)甲制成饼茶的概率为,同理,.随机变量的可能取值为,,,,故的分布列为【题目点拨】本题主要考查简单随机变量的分布列,属于基础题。19、(1)λ=1(1)【解题分析】
(1)根据通项公式可得Cλ3=11Cλ1,解得λ=1即可;(1)假设第r+1项系数最大,根据题意列式,化简得,再根据a5≥an对一切n∈{0,1,…,10}均成立,得到,解不等式组即可得到答案.【题目详解】(1)通项公式为Tr+1=,r=0,1,1,…,10,∴由a3=11a1得,Cλ3=11Cλ1,解得λ=1.(1)假设第r+1项系数最大,因为λ是正实数,依题意得,解得,变形得,因为a5≥an对一切n∈{0,1,…,10}均成立,∴∴,解得.【题目点拨】本题考查了二项展开式的通项公式,考查了二项展开式中系数的最大值问题,属于中档题.20、(1)见解析;(2)【解题分析】
(1)由得平面PAE,进而可得证;(2)先证得平面,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,分别计算平面的法向量为和,设与平面所成角为,则,代入计算即可得解.【题目详解】(1)证明:连接,因为,为线段的中点,所以.又,,所以为等边三角形,.因为,所以平面,又平面,所以平面平面.(2)解:设,则,因为,所以,同理可证,所以平面.如图,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.易知为二面角的平面角,所以,从而.由,得.又由,,知,.设平面的法向量为,由,,得,不妨设,得.又,,所以.设与平面所成角为,则.所以与平面所成角的正弦值为.【题目点拨】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21、(Ⅰ);(Ⅱ)不能;(Ⅲ).【解题分析】
(Ⅰ)由表知,以频率作为概率,再根据二项分布求数学期望,(Ⅱ)由乙流水线样本的频率分布直方图可知,合格品的个数为,由此得列联表,根据表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.2 大气受热过程和大气运动 第二课时课件 人教版(2019)必修一 地理高一上学期
- 工程数学(线性代数)
- 胫腓骨骨折护理查房课件
- 消防安全教育教案13749
- 婚庆策划居间合作协议范本
- 道 法走近老师+课件-2024-2025学年统编版道德与法治七年级上册
- 2024年哈尔滨客运资格证考试科目
- 2024年工厂员工手册范本
- 2024年拉萨客运从业资格考试题库
- 2024年厂房租赁合同范例
- 新婚避孕知识讲座
- 黄精加工项目可行性方案
- LTC与铁三角从线索到回款
- 外贸业务员负责外贸业务开展
- 课程思政理念下的高中历史教学设计研究
- 工会福利培训课件
- 论文写作中文献综述的撰写技巧
- 财务理论-山东财经大学-期末整理
- 万千教育学前自主学习:支持幼儿成为热情主动的终身学习者
- 【比亚迪新能源汽车企业财务风险识别与控制分析13000字(论文)】
- 大学课程《金融计量学(第5版)》习题及参考答案
评论
0/150
提交评论